Science of Synthesis: Houben-Weyl Methods of Molecular Transformations  Vol. 20b -  - E-Book

Science of Synthesis: Houben-Weyl Methods of Molecular Transformations Vol. 20b E-Book

0,0
2.199,99 €

oder
-100%
Sammeln Sie Punkte in unserem Gutscheinprogramm und kaufen Sie E-Books und Hörbücher mit bis zu 100% Rabatt.
Mehr erfahren.
Beschreibung

Science of Synthesis provides a critical review of the synthetic methodology developed from the early 1800s to date for the entire field of organic and organometallic chemistry. As the only resource providing full-text descriptions of organic transformations and synthetic methods as well as experimental procedures, Science of Synthesis is therefore a unique chemical information tool. Over 1000 world-renowned experts have chosen the most important molecular transformations for a class of organic compounds and elaborated on their scope and limitations. The systematic, logical and consistent organization of the synthetic methods for each functional group enables users to quickly find out which methods are useful for a particular synthesis and which are not. Effective and practical experimental procedures can be implemented quickly and easily in the lab.// The content of this e-book was originally published in October 2006.

Das E-Book können Sie in Legimi-Apps oder einer beliebigen App lesen, die das folgende Format unterstützen:

EPUB
Bewertungen
0,0
0
0
0
0
0
Mehr Informationen
Mehr Informationen
Legimi prüft nicht, ob Rezensionen von Nutzern stammen, die den betreffenden Titel tatsächlich gekauft oder gelesen/gehört haben. Wir entfernen aber gefälschte Rezensionen.



Science of Synthesis

Science of Synthesis is the authoritative and comprehensive reference work for the entire field of organic and organometallic synthesis.

Science of Synthesis presents the important synthetic methods for all classes of compounds and includes:

Methods critically evaluated by leading scientists

Background information and detailed experimental procedures

Schemes and tables which illustrate the reaction scope

Preface

As our understanding of the natural world increases, we begin to understand complex phenomena at molecular levels. This level of understanding allows for the design of molecular entities for functions ranging from material science to biology. Such design requires synthesis and, as the structures increase in complexity as a necessity for specificity, puts increasing demands on the level of sophistication of the synthetic methods. Such needs stimulate the improvement of existing methods and, more importantly, the development of new methods. As scientists confront the synthetic problems posed by the molecular targets, they require access to a source of reliable synthetic information. Thus, the need for a new, comprehensive, and critical treatment of synthetic chemistry has become apparent. To meet this challenge, an entirely new edition of the esteemed reference work Houben–Weyl Methods of Organic Chemistry will be published starting in the year 2000.

To reflect the new broader need and focus, this new edition has a new title, Science of Synthesis, Houben–Weyl Methods of Molecular Transformations. Science of Synthesis will benefit from more than 90 years of experience and will continue the tradition of excellence in publishing synthetic chemistry reference works. Science of Synthesis will be a balanced and critical reference work produced by the collaborative efforts of chemists, from both industry and academia, selected by the editorial board. All published results from journals, books, and patent literature from the early 1800s until the year of publication will be considered by our authors, who are among the leading experts in their field. The 48 volumes of Science of Synthesis will provide chemists with the most reliable methods to solve their synthesis problems. Science of Synthesis will be updated periodically and will become a prime source of information for chemists in the 21st century.

Science of Synthesis will be organized in a logical hierarchical system based on the target molecule to be synthesized. The critical coverage of methods will be supported by information intended to help the user choose the most suitable method for their application, thus providing a strong foundation from which to develop a successful synthetic route. Within each category of product, illuminating background information such as history, nomenclature, structure, stability, reactivity, properties, safety, and environmental aspects will be discussed along with a detailed selection of reliable methods. Each method and variation will be accompanied by reaction schemes, tables of examples, experimental procedures, and a background discussion of the scope and limitations of the reaction described.

The policy of the editorial board is to make Science of Synthesis the ultimate tool for the synthetic chemist in the 21st century.

We would like to thank all of our authors for submitting contributions of such outstanding quality, and, also for the dedication and commitment they have shown throughout the entire editorial process.

The Editorial Board

October 2000

D. Bellus (Basel, Switzerland)

E. N. Jacobsen (Cambridge, USA)

S. V. Ley (Cambridge, UK)

R. Noyori (Nagoya, Japan)

M. Regitz (Kaiserslautern, Germany)

P. J. Reider (New Jersey, USA)

E. Schaumann (Clausthal-Zellerfeld, Germany)

I. Shinkai (Tsukuba, Japan)

E. J. Thomas (Manchester, UK)

B. M. Trost (Stanford, USA)

Volume Editor's Preface

I am grateful to the many authors who diligently reviewed and evaluated the primary literature concerning the preparation of carboxylic acids and derivatives that has been published over the last several years. Thanks go to Dr. Joe Richmond and Dr. Fiona Shortt de Hernandez for their support in the initial planning stages of this volume. I am indebted to scientific editors, Dr. Marcus White, Dr. Mark Smith, Dr. Karen Muirhead, production assistant Michaela Frey, and other editors at Thieme Chemistry for their professionalism and commitment to the project. I would also like to thank Ms. Yinyan Zhao (Boston University) for her help in organizing the volume sections in the final stages of preparation. Finally, I want to give my sincere thanks to Professor Eric N. Jacobsen (Editorial Board and Volume 20 author) for his guidance and emotional support throughout.

Volume Editor

James S. Panek

Boston, Massachusetts, September 2006

Impressum

© 2010 Georg Thieme Verlag KGRüdigerstrasse 14D-70469 Stuttgart

Stylesheet:MVS Medizinverlage Stuttgart

E-Book-Produktion:DiTech Process Solutions, Mumbai (Indien)

Dieses E-Book ist urheberrechtlich geschützt. Abhängig vom eingesetzten Lesegerät kann es zu unterschiedlichen Darstellungen des vom Verlag freigegebenen Textes kommen.

Bibliographic Information published byDie Deutsche Bibliothek

Die Deutsche Bibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data is available on the internet at <http://dnb.ddb.de>

Library of Congress Cataloging in Publication Data

Science of synthesis : Houben–Weyl methods of molecular transformations.

    p. cm.

  Includes bibliographical references and index.

  ISBN 3-13-144691-9 – ISBN 1-58890-576-4 (v. 20b)

  1. Organic compounds–Synthesis. I. Title: Houben–Weyl methods of molecular transformations.

  QD262.S35 2000

  547′.2–dc21

                            00-061560

(Houben–Weyl methods of organic chemistry)

British Library Cataloguing in Publication Data

Science of Synthesis : Houben–Weyl methods of molecular transformation.

1. Organic compounds - Synthesis 2. Organic compounds- Synthesis - Laboratory manuals

I. Panek, J. S., II. Beignet, J.

547.2

ISBN (ePub):978-3-13-178131-4

Date of publication: October 25, 2006

Copyright and all related rights reserved, especially the right of copying and distribution, multiplication and reproduction, as well as of translation. No part of this publication may be reproduced by any process, whether by photostat or microfilm or any other procedure, without previous written consent by the publisher. This also includes the use of electronic media of data processing or reproduction of any kind.

This reference work mentions numerous commercial and proprietary trade names, registered trademarks and the like (not necessarily marked as such), patents, production and manufacturing procedures, registered designs, and designations. The editors and publishers wish to point out very clearly that the present legal situation in respect of these names or designations or trademarks must be carefully examined before making any commercial use of the same. Industrially produced apparatus and equipment are included to a necessarily restricted extent only and any exclusion of products not mentioned in this reference work does not imply that any such selection of exclusion has been based on quality criteria or quality considerations.

Warning! Read carefully the following: Although this reference work has been written by experts, the user must be advised that the handling of chemicals, microorganisms, and chemical apparatus carries potentially life-threatening risks. For example, serious dangers could occur through quantities being incorrectly given. The authors took the utmost care that the quantities and experimental details described herein reflected the current state of the art of science when the work was published. However, the authors, editors, and publishers take no responsibility as to the correctness of the content. Further, scientific knowledge is constantly changing. As new information becomes available, the user must consult it. Although the authors, publishers, and editors took great care in publishing this work, it is possible that typographical errors exist, including errors in the formulas given herein. Therefore, it is imperative that and the responsibility of every user to carefully check whether quantities, experimental details, or other information given herein are correct based on the user's own understanding as a scientist. Scaleup of experimental procedures published in Science of Synthesis carries additional risks. In cases of doubt, the user is strongly advised to seek the opinion of an expert in the field, the publishers, the editors, or the authors. When using the information described herein, the user is ultimately responsible for his or her own actions, as well as the actions of subordinates and assistants, and the consequences arising therefrom.

Preface

Volume Editor’s Preface

Table of Contents

20.5 Product Class 5: Carboxylic Acid Esters

20.5.1 Product Subclass 1: Alkyl Alkanoates

M. Yus, C. Nájera, and R. Chinchilla

20.5.1.1 Synthesis from Carbonic Acid Derivatives

S. J. Collier

20.5.1.2 Synthesis from Carboxylic Acids and Derivatives

N. F. Jain and C. E. Masse

20.5.1.3 Synthesis from Aldehydes, Ketones, and Derivatives (Including Enol Ethers)

L. Yan, S. Lin, and P. Liu

20.5.1.4 Synthesis from Organometallic Compounds, Alkyl Halides, Primary Alcohols, or Ethers (Excluding Reactions with Carboxylic Acid Derivatives)

M. Yus, C. Nájera, and R. Chinchilla

20.5.1.5 Synthesis from Alkenes (Excluding Reactions with Carboxylic Acid Derivatives)

G. Evano

20.5.1.6 Synthesis by Rearrangement

A. J. Phillips and C. E. Love

20.5.1.7 Synthesis with Retention of the Functional Group

M. Zhang and P. R. Hanson

20.5.2 Product Subclass 2: Arenedicarboxylic Acid Esters

L. R. Subramanian

20.5.3 Product Subclass 3: Butenedioic and Butynedioic Acid Esters

C. E. Masse

20.5.4 Product Subclass 4: Alkanedioic Acid Esters

C. E. Masse

20.5.5 Product Subclass 5: Alkynyl Alkanoates

S. G. Nelson

20.5.6 Product Subclass 6: Aryl Alkanoates

S. G. Nelson

20.5.7 Product Subclass 7: Alkenyl Alkanoates

S. G. Nelson

20.5.8 Product Subclass 8: 2-Oxo- and 2-Imino-Substituted Alkanoic Acid Esters, and Related Compounds

J. A. Westbrook and S. E. Schaus

20.5.9 Product Subclass 9: 2,2-Diheteroatom-Substituted Alkanoic Acid Esters

J. A. Westbrook and S. E. Schaus

20.5.10 Product Subclass 10: 2-Aminoalkanoic Acid Esters (α-Amino Acid Esters)

R. M. Garbaccio and S. E. Wolkenberg

20.5.11 Product Subclass 11: 2-Heteroatom-Substituted Alkanoic Acid Esters

S. R. Chemler and T. P. Zabawa

20.5.12 Product Subclass 12: Alk-2-ynoic Acid Esters

G. Evano

20.5.13 Product Subclass 13: Arenecarboxylic Acid Esters

T. P. Yoon and E. N. Jacobsen

20.5.14 Product Subclass 14: Alk-2-enoic Acid Esters

C. D. Vanderwal and E. N. Jacobsen

20.5.15 Product Subclass 15: 3-Oxo- and 3,3-Diheteroatom-Substituted Alkanoic Acid Esters

J. Beignet

20.5.16 Product Subclass 16: 3-Heteroatom-Substituted Alkanoic Acid Esters

G. Sartori and R. Maggi

20.6 Product Class 6: Lactones

M.E.Maier

20.7 Product Class 7: Peroxy Acids and Derivatives

S. Mitra, S. R. Gurrala, and R. S. Coleman

20.8 Product Class 8: Thiocarboxylic S-Acids, Selenocarboxylic Se-Acids, Tellurocarboxylic Te-Acids, and Derivatives

S. J. Collier

Keyword Index

Author Index

Abbreviations

Table of Contents

20.5 Product Class 5: Carboxylic Acid Esters

20.5.1 Product Subclass 1: Alkyl Alkanoates

M. Yus, C. Nájera, and R. Chinchilla

20.5.1 Product Subclass 1: Alkyl Alkanoates

20.5.1.1 Synthesis from Carbonic Acid Derivatives

S. J. Collier

20.5.1.1 Synthesis from Carbonic Acid Derivatives

20.5.1.1.1 Method 1: Use of Carbonic Acid Diesters

20.5.1.1.1.1 Variation 1: Reactions with Enolates

20.5.1.1.1.2 Variation 2: Reactions with Carbanions without Stabilizing Electron-Withdrawing α-Heteroatom Groups

20.5.1.1.1.3 Variation 3: Reaction with α-Heteroatom-Stabilized Carbanions

20.5.1.1.1.4 Variation 4: Intramolecular Rearrangements

20.5.1.1.2 Method 2: Use of Haloformates

20.5.1.1.2.1 Variation 1: Reactions with Enolates

20.5.1.1.2.2 Variation 2: Reaction with Carbanions without Stabilizing Electron-Withdrawing α-Heteroatom Groups

20.5.1.1.2.3 Variation 3: Reaction with α-Heteroatom-Stabilized Carbanions

20.5.1.1.2.4 Variation 4: Other Syntheses

20.5.1.1.3 Method 3: Use of Cyanoformate Esters

20.5.1.1.3.1 Variation 1: Reaction with Enolates

20.5.1.1.3.2 Variation 2: Using Other Carbon Nucleophiles

20.5.1.1.3.3 Variation 3: Novel Reactions

20.5.1.1.4 Method 4: Use of Di-tert-butyl Dicarbonate

20.5.1.2 Synthesis from Carboxylic Acids and Derivatives

N. F. Jain and C. E. Masse

20.5.1.2 Synthesis from Carboxylic Acids and Derivatives

20.5.1.2.1 Method 1: Synthesis from Carboxylic Acids

20.5.1.2.1.1 Variation 1: Phosphorus Activation of Alcohols (Mitsunobu Reaction)

20.5.1.2.1.2 Variation 2: Dicyclohexylcarbodiimide Activation of Acids

20.5.1.2.1.3 Variation 3: Direct Condensation of Acids and Alcohols Catalyzed by a Lewis Acid

20.5.1.2.1.4 Variation 4: Direct Condensation of Acids and Alcohols Using Ammonium Salts

20.5.1.2.2 Method 2: Synthesis from Acid Halides

20.5.1.2.3 Method 3: Synthesis from Acid Anhydrides

20.5.1.2.4 Method 4: Synthesis from Amides

20.5.1.2.5 Method 5: Synthesis from 2-Alkyl-4,5-dihydrooxazoles

20.5.1.2.6 Method 6: Synthesis from Nitriles

20.5.1.2.7 Method 7: Synthesis from Ketenes

20.5.1.2.7.1 Variation 1: Nucleophilic Addition of Alcohols

20.5.1.2.7.2 Variation 2: Asymmetric Chlorination

20.5.1.3 Synthesis from Aldehydes, Ketones, and Derivatives (Including Enol Ethers)

L. Yan, S. Lin, and P. Liu

20.5.1.3 Synthesis from Aldehydes, Ketones, and Derivatives (Including Enol Ethers)

20.5.1.3.1 Synthesis from Aldehydes

20.5.1.3.1.1 Oxidative Processes

20.5.1.3.1.1.1 Method 1: Using Manganese(IV) Oxide and Sodium Cyanide

20.5.1.3.1.1.2 Method 2: Using Bromine

20.5.1.3.1.1.2.1 Variation 1: Using Pyridinium Tribromide

20.5.1.3.1.1.3 Method 3: Using Iodine

20.5.1.3.1.1.4 Method 4: Using Pyridinium Dichromate

20.5.1.3.1.1.5 Method 5: Using Sodium or Calcium Hypochlorites

20.5.1.3.1.1.6 Method 6: Using N-Bromosuccinimide

20.5.1.3.1.1.6.1 Variation 1: Using N-Bromosuccinimide and Alkoxytrimethylsilanes or Alkoxytrialkylstannanes

20.5.1.3.1.1.7 Method 7: Using N-Iodosuccinimide

20.5.1.3.1.1.8 Method 8: Using Caro’s Acid

20.5.1.3.1.1.9 Method 9: Using Oxone

20.5.1.3.1.1.10 Method 10: Using Trichloroisocyanuric Acid

20.5.1.3.1.1.11 Method 11: Using Transition-Metal Catalysts

20.5.1.3.1.1.12 Method 12: Using Electrochemical Oxidation

20.5.1.3.1.1.13 Method 13: Using Ozone

20.5.1.3.1.1.14 Method 14: Using Hydrogen Peroxide

20.5.1.3.1.2 Oxidation/Reduction Processes

20.5.1.3.1.2.1 Method 1: Using the Tishchenko Reaction

20.5.1.3.1.2.1.1 Variation 1: Using the Homo Aldol–Tishchenko Reaction

20.5.1.3.1.2.1.2 Variation 2: Using the Hetero Aldol–Tishchenko Reaction

20.5.1.3.1.2.1.3 Variation 3: Using the Evans–Tishchenko Reaction

20.5.1.3.1.2.2 Method 2: Intramolecular Hydroacylation Reactions

20.5.1.3.2 Synthesis from Ketones via the Baeyer–Villiger Reaction

20.5.1.3.2.1 Method 1: Using Pertrifluoroacetic Acid

20.5.1.3.2.2 Method 2: Using Peroxybenzoic Acids

20.5.1.3.2.3 Method 3: Using Hydrogen Peroxide

20.5.1.3.2.4 Method 4: Using Bis(trimethylsilyl) Peroxide

20.5.1.3.2.5 Method 5: Using Enzymes

20.5.1.3.3 Synthesis from Acetals

20.5.1.3.3.1 Method 1: Using Ozone

20.5.1.3.3.2 Method 2: Using Hypochlorous Acid

20.5.1.3.3.3 Method 3: Using N-Bromosuccinimide

20.5.1.3.3.4 Method 4: Using Peroxy Acids

20.5.1.3.3.5 Method 5: Using Oxone

20.5.1.3.3.6 Method 6: Using Caro’s Acid

20.5.1.3.3.7 Method 7: Using tert-Butyl Hydroperoxide and a Catalyst

20.5.1.3.3.8 Method 8: Photochemical Oxidation

20.5.1.3.3.9 Method 9: Using Potassium Permanganate

20.5.1.3.4 Synthesis from Enol Ethers

20.5.1.3.4.1 Method 1: Using Ozone

20.5.1.3.4.2 Method 2: Using 3-Chloroperoxybenzoic Acid

20.5.1.3.4.3 Method 3: Using Chromium(VI) Oxide

20.5.1.3.4.4 Method 4: Using Pyridinium Chlorochromate

20.5.1.3.5 Synthesis from α-Hydroxy Carbonyl Compounds and 1,2-Diones

20.5.1.3.5.1 Method 1: Using Lead(IV) Acetate

20.5.1.3.5.2 Method 2: Using Oxone or Potassium Peroxymonosulfate

20.5.1.3.5.3 Method 3: Using Dioxygen

20.5.1.3.5.4 Method 4: Using Electrochemistry

20.5.1.4 Synthesis from Organometallic Compounds, Alkyl Halides, Primary Alcohols, or Ethers (Excluding Reactions with Carboxylic Acid Derivatives)

M. Yus, C. Nájera, and R. Chinchilla

20.5.1.4 Synthesis from Organometallic Compounds, Alkyl Halides, Primary Alcohols, or Ethers (Excluding Reactions with Carboxylic Acid Derivatives)

20.5.1.4.1 Alkoxycarbonylation of Organometallic Compounds

20.5.1.4.1.1 Method 1: Alkoxycarbonylation of Organolithium Compounds

20.5.1.4.1.2 Method 2: Alkoxycarbonylation of Organomagnesium Compounds

20.5.1.4.1.3 Method 3: Alkoxycarbonylation of Organotransition-Metal Compounds

20.5.1.4.2 Alkoxycarbonylation of Alkyl Halides

20.5.1.4.2.1 Method 1: Alkoxycarbonylation of Alkyl Halides Promoted by Acids

20.5.1.4.2.2 Method 2: Alkoxycarbonylation of Alkyl Halides Promoted by Transition-Metal Catalysts

20.5.1.4.2.3 Method 3: Alkoxycarbonylation of Alkyl Iodides Promoted by Photolysis

20.5.1.4.3 Oxidation of Primary Alcohols

20.5.1.4.3.1 Method 1: Oxidation by Halonium-Generating Combinations

20.5.1.4.3.2 Method 2: Oxidation by Chromium(IV) Oxide

20.5.1.4.3.3 Method 3: Transition-Metal-Catalyzed Oxidations

20.5.1.4.4 Oxidation of Ethers, Silyl Ethers, or Stannyl Ethers

20.5.1.4.4.1 Method 1: Oxidation of Ethers

20.5.1.4.4.1.1 Variation 1: Oxidation by Halonium-Generating Combinations

20.5.1.4.4.1.2 Variation 2: Oxidation by Stoichiometric Transition-Metal Reagents

20.5.1.4.4.1.3 Variation 3: Transition-Metal-Catalyzed Oxidation

20.5.1.4.4.2 Method 2: Oxidation of Silyl and Stannyl Ethers Using N-Bromosuccinimide

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!