Erhalten Sie Zugang zu diesem und mehr als 300000 Büchern ab EUR 5,99 monatlich.
On the Heavens Aristotle - On the Heavens is Aristotle's chief cosmological treatise: written in 350 BC it contains his astronomical theory and his ideas on the concrete workings of the terrestrial world. This work is significant as one of the defining pillars of the Aristotelian worldview, a school of philosophy that dominated intellectual thinking for almost two millennia. Similarly, this work and others by Aristotle were important seminal works by which much of scholasticism was derived.
Sie lesen das E-Book in den Legimi-Apps auf:
Seitenzahl: 199
Das E-Book (TTS) können Sie hören im Abo „Legimi Premium” in Legimi-Apps auf:
Take our Free
Quick Quiz and Find Out Which
Best Side Hustle is ✓Best for You.
✓ VISIT OUR WEBSITE:
→LYFREEDOM.COM ←← CLICK HERE←
Part 1 The science which has to do with nature clearly concerns itself for the most part with bodies and magnitudes and their properties and movements, but also with the principles of this sort of substance, as many as they may be. For of things constituted by nature some are bodies and magnitudes, some possess body and magnitude, and some are principles of things which possess these. Now a continuum is that which is divisible into parts always capable of subdivision, and a body is that which is every way divisible. A magnitude if divisible one way is a line, if two ways a surface, and if three a body. Beyond these there is no other magnitude, because the three dimensions are all that there are, and that which is divisible in three directions is divisible in all. For, as the Pythagoreans say, the world and all that is in it is determined by the number three, since beginning and middle and end give the number of an 'all', and the number they give is the triad. And so, having taken these three from nature as (so to speak) laws of it, we make further use of the number three in the worship of the Gods. Further, we use the terms in practice in this way. Of two things, or men, we say 'both', but not 'all': three is the first number to which the term 'all' has been appropriated. And in this, as we have said, we do but follow the lead which nature gives. Therefore, since 'every' and 'all' and 'complete' do not differ from one another in respect of form, but only, if at all, in their matter and in that to which they are applied, body alone among magnitudes can be complete. For it alone is determined by the three dimensions, that is, is an 'all'. But if it is divisible in three dimensions it is every way divisible, while the other magnitudes are divisible in one dimension or in two alone: for the divisibility and continuity of magnitudes depend upon the number of the dimensions, one sort being continuous in one direction, another in two, another in all. All magnitudes, then, which are divisible are also continuous. Whether we can also say that whatever is continuous is divisible does not yet, on our present grounds, appear. One thing, however, is clear. We cannot pass beyond body to a further kind, as we passed from length to surface, and from surface to body. For if we could, it would cease to be true that body is complete magnitude. We could pass beyond it only in virtue of a defect in it; and that which is complete cannot be defective, since it has being in every respect. Now bodies which are classed as parts of the whole are each complete according to our formula, since each possesses every dimension. But each is determined relatively to that part which is next to it by contact, for which reason each of them is in a sense many bodies. But the whole of which they are parts must necessarily be complete, and thus, in accordance with the meaning of the word, have being, not in some respect only, but in every respect.
Part 2 The question as to the nature of the whole, whether it is infinite in size or limited in its total mass, is a matter for subsequent inquiry. We will now speak of those parts of the whole which are specifically distinct. Let us take this as our starting-point. All natural bodies and magnitudes we hold to be, as such, capable of locomotion; for nature, we say, is their principle of movement. But all movement that is in place, all locomotion, as we term it, is either straight or circular or a combination of these two, which are the only simple movements. And the reason of this is that these two, the straight and the circular line, are the only simple magnitudes. Now revolution about the centre is circular motion, while the upward and downward movements are in a straight line, 'upward' meaning motion away from the centre, and 'downward' motion towards it. All simple motion, then, must be motion either away from or towards or about the centre. This seems to be in exact accord with what we said above: as body found its completion in three dimensions, so its movement completes itself in three forms. Bodies are either simple or compounded of such; and by simple bodies I mean those which possess a principle of movement in their own nature, such as fire and earth with their kinds, and whatever is akin to them. Necessarily, then, movements also will be either simple or in some sort compound-simple in the case of the simple bodies, compound in that of the composite-and in the latter case the motion will be that of the simple body which prevails in the composition. Supposing, then, that there is such a thing as simple movement, and that circular movement is an instance of it, and that both movement of a simple body is simple and simple movement is of a simple body (for if it is movement of a compound it will be in virtue of a prevailing simple element), then there must necessarily be some simple body which revolves naturally and in virtue of its own nature with a circular movement. By constraint, of course, it may be brought to move with the motion of something else different from itself, but it cannot so move naturally, since there is one sort of movement natural to each of the simple bodies. Again, if the unnatural movement is the contrary of the natural and a thing can have no more than one contrary, it will follow that circular movement, being a simple motion, must be unnatural, if it is not natural, to the body moved. If then (1) the body, whose movement is circular, is fire or some other element, its natural motion must be the contrary of the circular motion. But a single thing has a single contrary; and upward and downward motion are the contraries of one another. If, on the other hand, (2) the body moving with this circular motion which is unnatural to it is something different from the elements, there will be some other motion which is natural to it. But this cannot be. For if the natural motion is upward, it will be fire or air, and if downward, water or earth. Further, this circular motion is necessarily primary. For the perfect is naturally prior to the imperfect, and the circle is a perfect thing. This cannot be said of any straight line:-not of an infinite line; for, if it were perfect, it would have a limit and an end: nor of any finite line; for in every case there is something beyond it, since any finite line can be extended. And so, since the prior movement belongs to the body which naturally prior, and circular movement is prior to straight, and movement in a straight line belongs to simple bodies-fire moving straight upward and earthy bodies straight downward towards the centre-since this is so, it follows that circular movement also must be the movement of some simple body. For the movement of composite bodies is, as we said, determined by that simple body which preponderates in the composition. These premises clearly give the conclusion that there is in nature some bodily substance other than the formations we know, prior to them all and more divine than they. But it may also be proved as follows. We may take it that all movement is either natural or unnatural, and that the movement which is unnatural to one body is natural to another-as, for instance, is the case with the upward and downward movements, which are natural and unnatural to fire and earth respectively. It necessarily follows that circular movement, being unnatural to these bodies, is the natural movement of some other. Further, if, on the one hand, circular movement is natural to something, it must surely be some simple and primary body which is ordained to move with a natural circular motion, as fire is ordained to fly up and earth down. If, on the other hand, the movement of the rotating bodies about the centre is unnatural, it would be remarkable and indeed quite inconceivable that this movement alone should be continuous and eternal, being nevertheless contrary to nature. At any rate the evidence of all other cases goes to show that it is the unnatural which quickest passes away. And so, if, as some say, the body so moved is fire, this movement is just as unnatural to it as downward movement; for any one can see that fire moves in a straight line away from the centre. On all these grounds, therefore, we may infer with confidence that there is something beyond the bodies that are about us on this earth, different and separate from them; and that the superior glory of its nature is proportionate to its distance from this world of ours.
Part 3 In consequence of what has been said, in part by way of assumption and in part by way of proof, it is clear that not every body either possesses lightness or heaviness. As a preliminary we must explain in what sense we are using the words 'heavy' and 'light', sufficiently, at least, for our present purpose: we can examine the terms more closely later, when we come to consider their essential nature. Let us then apply the term 'heavy' to that which naturally moves towards the centre, and 'light' to that which moves naturally away from the centre. The heaviest thing will be that which sinks to the bottom of all things that move downward, and the lightest that which rises to the surface of everything that moves upward. Now, necessarily, everything which moves either up or down possesses lightness or heaviness or both-but not both relatively to the same thing: for things are heavy and light relatively to one another; air, for instance, is light relatively to water, and water light relatively to earth. The body, then, which moves in a circle cannot possibly possess either heaviness or lightness. For neither naturally nor unnaturally can it move either towards or away from the centre. Movement in a straight line certainly does not belong to it naturally, since one sort of movement is, as we saw, appropriate to each simple body, and so we should be compelled to identify it with one of the bodies which move in this way. Suppose, then, that the movement is unnatural. In that case, if it is the downward movement which is unnatural, the upward movement will be natural; and if it is the upward which is unnatural, the downward will be natural. For we decided that of contrary movements, if the one is unnatural to anything, the other will be natural to it. But since the natural movement of the whole and of its part of earth, for instance, as a whole and of a small clod-have one and the same direction, it results, in the first place, that this body can possess no lightness or heaviness at all (for that would mean that it could move by its own nature either from or towards the centre, which, as we know, is impossible); and, secondly, that it cannot possibly move in the way of locomotion by being forced violently aside in an upward or downward direction. For neither naturally nor unnaturally can it move with any other motion but its own, either itself or any part of it, since the reasoning which applies to the whole applies also to the part. It is equally reasonable to assume that this body will be ungenerated and indestructible and exempt from increase and alteration, since everything that comes to be comes into being from its contrary and in some substrate, and passes away likewise in a substrate by the action of the contrary into the contrary, as we explained in our opening discussions. Now the motions of contraries are contrary. If then this body can have no contrary, because there can be no contrary motion to the circular, nature seems justly to have exempted from contraries the body which was to be ungenerated andindestructible. For it is in contraries that generation and decay subsist. Again, that which is subject to increase increases upon contact with a kindred body, which is resolved into its matter. But there is nothing out of which this body can have been generated. And if it is exempt from increase and diminution, the same reasoning leads us to suppose that it is also unalterable. For alteration is movement in respect of quality; and qualitative states and dispositions, such as health and disease, do not come into being without changes of properties. But all natural bodies which change their properties we see to be subject without exception to increase and diminution. This is the case, for instance, with the bodies of animals and their parts and with vegetable bodies, and similarly also with those of the elements. And so, if the body which moves with a circular motion cannot admit of increase or diminution, it is reasonable to suppose that it is also unalterable. The reasons why the primary body is eternal and not subject to increase or diminution, but unaging and unalterable and unmodified, will be clear from what has been said to any one who believes in our assumptions. Our theory seems to confirm experience and to be confirmed by it. For all men have some conception of the nature of the gods, and all who believe in the existence of gods at all, whether barbarian or Greek, agree in allotting the highest place to the deity, surely because they suppose that immortal is linked with immortal and regard any other supposition as inconceivable. If then there is, as there certainly is, anything divine, what we have just said about the primary bodily substance was well said. The mere evidence of the senses is enough to convince us of this, at least with human certainty. For in the whole range of time past, so far as our inherited records reach, no change appears to have taken place either in the whole scheme of the outermost heaven or in any of its proper parts. The common name, too, which has been handed down from our distant ancestors even to our own day, seems to show that they conceived of it in the fashion which we have been expressing. The same ideas, one must believe, recur in men's minds not once or twice but again and again. And so, implying that the primary body is something else beyond earth, fire, air, and water, they gave the highest place a name of its own, aither, derived from the fact that it 'runs always' for an eternity of time. Anaxagoras, however, scandalously misuses this name, taking aither as equivalent to fire. It is also clear from what has been said why the number of what we call simple bodies cannot be greater than it is. The motion of a simple body must itself be simple, and we assert that there are only these two simple motions, the circular and the straight, the latter being subdivided into motion away from and motion towards the centre.
Part 4 That there is no other form of motion opposed as contrary to the circular may be proved in various ways. In the first place, there is an obvious tendency to oppose the straight line to the circular. For concave and convex are a not only regarded as opposed to one another, but they are also coupled together and treated as a unity in opposition to the straight. And so, if there is a contrary to circular motion, motion in a straight line must be recognized as having the best claim to that name. But the two forms of rectilinear motion are opposed to one another by reason of their places; for up and down is a difference and a contrary opposition in place. Secondly, it may be thought that the same reasoning which holds good of the rectilinear path applies also the circular, movement from A to B being opposed as contrary to movement from B to A. But what is meant is still rectilinear motion. For that is limited to a single path, while the circular paths which pass through the same two points are infinite in number. Even if we are confined to the single semicircle and the opposition is between movement from C to D and from D to C along that semicircle, the case is no better. For the motion is the same as that along the diameter, since we invariably regard the distance between two points as the length of the straight line which joins them. It is no more satisfactory to construct a circle and treat motion 'along one semicircle as contrary to motion along the other. For example, taking a complete circle, motion from E to F on the semicircle G may be opposed to motion from F to E on the semicircle H. But even supposing these are contraries, it in no way follows that the reverse motions on the complete circumference contraries. Nor again can motion along the circle from A to B be regarded as the contrary of motion from A to C: for the motion goes from the same point towards the same point, and contrary motion was distinguished as motion from a contrary to its contrary. And even if the motion round a circle is the contrary of the reverse motion, one of the two would be ineffective: for both move to the same point, because that which moves in a circle, at whatever point it begins, must necessarily pass through all the contrary places alike. (By contrarieties of place I mean up and down, back and front, and right and left; and the contrary oppositions of movements are determined by those of places.) One of the motions, then, would be ineffective, for if the two motions were of equal strength, there would be no movement either way, and if one of the two were preponderant, the other would be inoperative. So that if both bodies were there, one of them, inasmuch as it would not be moving with its own movement, would be useless, in the sense in which a shoe is useless when it is not worn. But God and nature create nothing that has not its use.
Part 5 This being clear, we must go on to consider the questions which remain. First, is there an infinite body, as the majority of the ancient philosophers thought, or is this an impossibility? The decision of this question, either way, is not unimportant, but rather all-important, to our search for the truth. It is this problem which has practically always been the source of the differences of those who have written about nature as a whole. So it has been and so it must be; since the least initial deviation from the truth is multiplied later a thousandfold. Admit, for instance, the existence of a minimum magnitude, and you will find that the minimum which you have introduced, small as it is, causes the greatest truths of mathematics to totter. The reason is that a principle is great rather in power than in extent; hence that which was small at the start turns out a giant at the end. Now the conception of the infinite possesses this power of principles, and indeed in the sphere of quantity possesses it in a higher degree than any other conception; so that it is in no way absurd or unreasonable that the assumption that an infinite body exists should be of peculiar moment to our inquiry. The infinite, then, we must now discuss, opening the whole matter from the beginning. Every body is necessarily to be classed either as simple or as composite; the infinite body, therefore, will be either simple or composite. But it is clear, further, that if the simple bodies are finite, the composite must also be finite, since that which is composed of bodies finite both in number and in magnitude is itself finite in respect of number and magnitude: its quantity is in fact the same as that of the bodies which compose it. What remains for us to consider, then, is whether any of the simple bodies can be infinite in magnitude, or whether this is impossible. Let us try the primary body first, and then go on to consider the others. The body which moves in a circle must necessarily be finite in every respect, for the following reasons. (1) If the body so moving is infinite, the radii drawn from the centre will be infinite. But the space between infinite radii is infinite: and by the space between the radii I mean the area outside which no magnitude which is in contact with the two lines can be conceived as falling. This, I say, will be infinite: first, because in the case of finite radii it is always finite; and secondly, because in it one can always go on to a width greater than any given width; thus the reasoning which forces us to believe in infinite number, because there is no maximum, applies also to the space between the radii. Now the infinite cannot be traversed, and if the body is infinite the interval between the radii is necessarily infinite: circular motion therefore is an impossibility. Yet our eyes tell us that the heavens revolve in a circle, and by argument also we have determined that there is something to which circular movement belongs. (2) Again, if from a finite time a finite time be subtracted, what remains must be finite and have a beginning. And if the time of a journey has a beginning, there must be a beginning also of the movement, and consequently also of the distance traversed. This applies universally. Take a line, ACE, infinite in one direction, E, and another line, BB, infinite in both directions. Let ACE describe a circle, revolving upon C as centre. In its movement it will cut BB continuously for a certain time. This will be a finite time, since the total time is finite in which the heavens complete their circular orbit, and consequently the time subtracted from it, during which the one line in its motion cuts the other, is also finite. Therefore there will be a point at which ACE began for the first time to cut BB. This, however, is impossible. The infinite, then, cannot revolve in a circle; nor could the world, if it were infinite. (3) That the infinite cannot move may also be shown as follows. Let A be a finite line moving past the finite line, B. Of necessity A will pass clear of B and B of A at the same moment; for each overlaps the other to precisely the same extent. Now if the two were both moving, and moving in contrary directions, they would pass clear of one another more rapidly; if one were still and the other moving past it, less rapidly; provided that the speed of the latter were the same in both cases. This, however, is clear: that it is impossible to traverse an infinite line in a finite time. Infinite time, then, would be required. (This we demonstrated above in the discussion of movement.) And it makes no difference whether a finite is passing by an infinite or an infinite by a finite. For when A is passing