On Physical Lines of Force (In Four Parts) - James Clerk Maxwell - E-Book

On Physical Lines of Force (In Four Parts) E-Book

James Clerk Maxwell

0,0
0,99 €

oder
-100%
Sammeln Sie Punkte in unserem Gutscheinprogramm und kaufen Sie E-Books und Hörbücher mit bis zu 100% Rabatt.
Mehr erfahren.
Beschreibung

"On Physical Lines of Force" is a four-part paper written by James Clerk Maxwell published in 1861. In it, Maxwell derived the equations of electromagnetism in conjunction with a "sea" of "molecular vortices" which he used to model Faraday's lines of force. Maxwell had studied and commented on the field of electricity and magnetism as early as 1855/6 when "On Faraday's Lines of Force" was read to the Cambridge Philosophical Society. Maxwell made an analogy between the density of this medium and the magnetic permeability, as well as an analogy between the transverse elasticity and the dielectric constant, and using the results of a prior experiment by Wilhelm Eduard Weber and Rudolf Kohlrausch performed in 1856, he established a connection between the speed of light and the speed of propagation of waves in this medium.

The paper ushered in a new era of classical electrodynamics and catalyzed further progress in the mathematical field of vector calculus. Because of this, it is considered one of the most historically significant publications in physics and science in general, comparable with Einstein's Annus Mirabilis papers and Newton's Principia Mathematica.

This book includes the following:

Part I: The Theory of Molecular Vortices applied to Magnetic Phenomena1
Part II: The Theory of Molecular Vortices applied to Electric Currents29
Part III: The Theory of Molecular Vortices applied to Statical Electricity67
Part IV: The Theory of Molecular Vortices applied to the Action of Magnetism on Polarized Light92
Footnotes111

Das E-Book können Sie in Legimi-Apps oder einer beliebigen App lesen, die das folgende Format unterstützen:

EPUB
Bewertungen
0,0
0
0
0
0
0
Mehr Informationen
Mehr Informationen
Legimi prüft nicht, ob Rezensionen von Nutzern stammen, die den betreffenden Titel tatsächlich gekauft oder gelesen/gehört haben. Wir entfernen aber gefälschte Rezensionen.



ON PHYSICAL LINES OF FORCE

BY

James Clerk Maxwell

1861

CONTENTS

Part I: The Theory of Molecular Vortices applied to Magnetic Phenomena

Part II: The Theory of Molecular Vortices applied to Electric Currents

Part III: The Theory of Molecular Vortices applied to Statical Electricity​

Part IV: The Theory of Molecular Vortices applied to the Action of Magnetism on Polarized Light

Footnotes

Part I: The Theory of Molecular Vortices applied to Magnetic Phenomena

I

N all phenomena involving attractions or repulsions, or any forces depending on the relative position of bodies, we have to determine the magnitude and direction of the force which would act on a given body, if placed in a given position.

In the case of a body acted on by the gravitation of a sphere, this force is inversely as the square of the distance, and in a straight line to the centre of the sphere. In the case of two attracting spheres, or of a body not spherical, the magnitude and direction of the force vary according to more complicated laws. In electric and magnetic phenomena, the magnitude and direction of the resultant force at any point is the main subject of investigation. Suppose that the direction of the force at any point is known, then, if we draw a line so that in every part of its course it coincides in direction with the force at that point, this line may be called a line of force, since it indicates the direction of the force in every part of its course.

By drawing a sufficient number of lines of force, we may indicate the direction of the force in every part of the space in which it acts.

Thus if we strew iron filings on paper near a magnet, each filing will be magnetized by induction, and the consecutive filings will unite by their opposite poles, so as to form fibres, and these fibres will indicate the direction of the lines of force. The beautiful illustration of the presence of magnetic force afforded by this experiment, naturally tends to make us think of ​the lines of force as something real, and as indicating something more than the mere resultant of two forces, whose seat of action is at a distance, and which do not exist there at all until a magnet is placed in that part of the field. We are dissatisfied with the explanation founded on the hypothesis of attractive and repellent forces directed towards the magnetic poles, even though we may have satisfied ourselves that the phenomenon is in strict accordance with that hypothesis, and we cannot help thinking that in every place where we find these lines of force, some physical state or action must exist in sufficient energy to produce the actual phenomena.

My object in this paper is to clear the way for speculation in this direction, by investigating the mechanical results of certain states of tension and motion in a medium, and comparing these with the observed phenomena of magnetism and electricity. By pointing out the mechanical consequences of such hypotheses, I hope to be of some use to those who consider the phenomena as due to the action of a medium, but are in doubt as to the relation of this hypothesis to the experimental laws already established, which have generally been expressed in the language of other hypotheses.

I have in a former paper[1] endeavoured to lay before the mind of the geometer a clear conception of the relation of the lines of force to the space in which they are traced. By making use of the conception of currents in a fluid, I showed how to draw lines of force, which should indicate by their number the amount of force, so that each line may be called a unit-line of force (see Faraday's `Researches,' 3122); and I have investigated the path of the lines where they pass from one medium to another.

In the same paper I have found the geometrical significance of the "Electrotonic State," and have shown how to deduce the mathematical relations between the electrotonic state, magnetism, electric currents, and the electromotive force, using mechanical illustrations to assist the imagination, but not to account for the phenomena.

I propose now to examine magnetic phenomena from a mechanical point of view, and to determine what tensions in, or motions of, a medium are capable of producing the mechanical phenomena observed. If, by the same hypothesis, we can connect the phenomena of magnetic attraction with electromagnetic phenomena and with those of induced currents, we shall have found a theory which, if not true, can only be proved to be erroneous by experiments which will greatly enlarge our knowledge of this part of physics.

​The mechanical conditions of a medium under magnetic influence have been variously conceived of, as currents, undulations, or states of displacement or strain, or of pressure or stress.

Currents, issuing from the north pole and entering the south pole of a magnet, or circulating round an electric current, have the advantage of representing correctly the geometrical arrangement of the lines of force, if we could account on mechanical principles for the phenomena of attraction, or for the currents themselves, or explain their continued existence.

Undulations issuing from a centre would, according to the calculations of Professor Challis, produce an effect similar to attraction in the direction of the centre; but admitting this to be true, we know that two series of undulations traversing the same space do not combine into one resultant as two attractions do, but produce an effect depending on relations of phase as well as intensity, and if allowed to proceed, they diverge from each other without any mutual action. In fact the mathematical laws of attractions are not analogous in any respect to those of undulations, while they have remarkable analogies with those of currents, of the conduction of heat and electricity, and of elastic bodies.

In the Cambridge and Dublin Mathematical Journal for January 1847, Professor William Thomson has given a "Mechanical Representation of Electric, Magnetic, and Galvanic Forces," by means of the displacements of the particles of an elastic solid in a state of strain. In this representation we must make the angular displacement at every point of the solid proportional to the magnetic force at the corresponding point of the magnetic field, the direction of the axis of rotation of the displacement corresponding to the direction of the magnetic force. The absolute displacement of any particle will then correspond in magnitude and direction to that which I have identified with the electrotonic state; and the relative displacement of any particle, considered with reference to the particle in its immediate neighbourhood, will correspond in magnitude and direction to the quantity of electric current passing through the corresponding point of the magneto-electric field. The author of this method of representation does not attempt to explain the origin of the observed forces by the effects due to these strains in the elastic solid, but makes use of the mathematical analogies of the two problems to assist the imagination in the study of both.

We come now to consider the magnetic influence as existing in the form of some kind of pressure or tension, or, more generally, of stress in the medium.

Stress is action and reaction between the consecutive parts of a body, and consists in general of pressures or tensions different in different directions at the same point of the medium.

​The necessary relations among these forces have been investigated by mathematicians; and it has been shown that the most general type of a stress consists of a combination of three principal pressures or tensions, in directions at right angles to each other.

When two of the principal pressures are equal, the third becomes an axis of symmetry, either of greatest or least pressure, the pressures at right angles to this axis being all equal.

When the three principal pressures are equal, the pressure is equal in every direction, and there results a stress having no determinate axis of direction, of which we have an example in simple hydrostatic pressure.

The general type of a stress is not suitable as a representation of a magnetic force, because a line of magnetic force has direction and intensity, but has no third quality indicating any difference between the sides of the line, which would be analogous to that observed in the case of polarized light[2].

We must therefore represent the magnetic force at a point by a stress having a single axis of greatest or least pressure, and all the pressures at right angles to this axis equal. It may be objected that it is inconsistent to represent a line of force, which is essentially dipolar, by an axis of stress, which is necessarily isotropic; but we know that every phenomenon of action and reaction is isotropic in its results, because the effects of the force on the bodies between which it acts are equal and opposite, while the nature and origin of the force may be dipolar, as in the attraction between a north and a south pole.

Let us next consider the mechanical effect of a state of stress symmetrical about an axis. We may resolve it, in all eases, into a simple hydrostatic pressure, combined with a simple pressure or tension along the axis. When the axis is that of greatest pressure, the force along the axis will be a pressure. When the axis is that of least pressure, the force along the axis will be a tension.

If we observe the lines of force between two magnets, as indicated by iron filings, we shall see that whenever the lines of force pass from one pole to another, there is attraction between those poles; and where the lines of force from the poles avoid each other and are dispersed into space, the poles repel each other, so that in both cases they are drawn in the direction of the resultant of the lines of force.

It appears therefore that the stress in the axis of a line of magnetic force is a tension, like that of a rope.

If we calculate the lines of force in the neighbourhood of two gravitating bodies, we shall find them the same in direction as ​those near two magnetic poles of the same name; but we know that the mechanical effect is that of attraction instead of repulsion. The lines of force in this case do not run between the bodies, but avoid each other, and are dispersed over space. In order to produce the effect of attraction, the stress along the lines of gravitating force must be a pressure.

Let us now suppose that the phenomena of magnetism depend on the existence of a tension in the direction of the lines of force, combined with a hydrostatic pressure; or in other words, a pressure greater in the equatorial than in the axial direction: the next question is, what mechanical explanation can we give of this inequality of pressures in a fluid or mobile medium? The explanation which most readily occurs to the mind is that the excess of pressure in the equatorial direction arises from the centrifugal force of vortices or eddies in the medium having their axes in directions parallel to the lines of force.

This explanation of the cause of the inequality of pressures at once suggests the means of representing the dipolar character of the line of force. Every vortex is essentially dipolar, the two extremities of its axis being distinguished by the direction of its revolution as observed from those points.

We also know that when electricity circulates in a conductor, it produces lines of magnetic force passing through the circuit, the direction of the lines depending on the direction of the circulation. Let us suppose that the direction of revolution of our vortices is that in which vitreous electricity must revolve in order to produce lines of force whose direction within the circuit is the same as that of the given lines of force.

We shall suppose at present that all the vortices in any one part of the field are revolving in the same direction about axes nearly parallel, but that in passing from one part of the field to another, the direction of the axes, the velocity of rotation, and the density of the substance of the vortices are subject to change. We shall investigate the resultant mechanical effect upon an element of the medium, and from the mathematical expression of this resultant we shall deduce the physical character of its different component parts.

Prop. I.—If in two fluid systems geometrically similar the velocities and densities at corresponding points are proportional, then the differences of pressure at corresponding points due to the motion will vary in the duplicate ratio of the velocities and the simple ratio of the densities.

Let l be the ratio of the linear dimensions, m that of the velocities, n that of the densities, and p that of the pressures due to the motion. Then the ratio of the masses of corresponding portions will be l3n, and the ratio of the velocities acquired in ​traversing similar parts of the systems will be ; so that is the ratio of the momenta acquired by similar portions in traversing similar parts of their paths.

The ratio of the surfaces is , that of the forces acting on them is , and that of the times during which they act is ; so that the ratio of the impulse of the forces is , and we have now

,

or

;

that is, the ratio of the pressures due to the motion is compounded of the ratio of the densities and the duplicate ratio of the velocities , and does not depend on the linear dimensions of the moving systems.

In a circular vortex, revolving with uniform angular velocity, if the pressure at the axis is , that at the circumference will be , where is the density and the velocity at the circumference. The mean pressure parallel to the axis will be

.

If a number of such vortices were placed together side by side with their axes parallel, they would form a medium in which there would be a pressure parallel to the axes, and a pressure in any perpendicular direction. If the vortices are circular, and have uniform angular velocity and density throughout, then

.

If the vortices are not circular, and if the angular velocity and the density are not uniform, but vary according to the same law for all the vortices,