Schöpfungen der Ingenieurtechnik der Neuzeit - Geitel, Max - kostenlos E-Book

Schöpfungen der Ingenieurtechnik der Neuzeit E-Book

Max, Geitel

0,0
0,00 €

-100%
Sammeln Sie Punkte in unserem Gutscheinprogramm und kaufen Sie E-Books und Hörbücher mit bis zu 100% Rabatt.
Mehr erfahren.
Beschreibung

Gratis E-Book downloaden und überzeugen wie bequem das Lesen mit Legimi ist.

Das E-Book können Sie in Legimi-Apps oder einer beliebigen App lesen, die das folgende Format unterstützen:

EPUB
MOBI

Seitenzahl: 171

Bewertungen
0,0
0
0
0
0
0
Mehr Informationen
Mehr Informationen
Legimi prüft nicht, ob Rezensionen von Nutzern stammen, die den betreffenden Titel tatsächlich gekauft oder gelesen/gehört haben. Wir entfernen aber gefälschte Rezensionen.



The Project Gutenberg EBook of Schöpfungen der Ingenieurtechnik der Neuzeit, by Max GeitelThis eBook is for the use of anyone anywhere in the United States and mostother parts of the world at no cost and with almost no restrictionswhatsoever.  You may copy it, give it away or re-use it under the terms ofthe Project Gutenberg License included with this eBook or online atwww.gutenberg.org.  If you are not located in the United States, you'll haveto check the laws of the country where you are located before using this ebook.Title: Schöpfungen der Ingenieurtechnik der NeuzeitAuthor: Max GeitelRelease Date: October 31, 2014 [EBook #47251]Language: German*** START OF THIS PROJECT GUTENBERG EBOOK SCHÖPFUNGEN ***Produced by Peter Becker, Jens Poenisch and the OnlineDistributed Proofreading Team at http://www.pgdp.net

Anmerkungen zur Transkription

Im Original gesperrter Text wird so dargestellt.

Im Original in Antiqua gesetzter Text wird so dargestellt.

Im Original fett gesetzter Text wird so dargestellt.

Weitere Anmerkungen zur Transkription finden sich am Ende des Buches.

Aus Natur und Geisteswelt

Sammlung wissenschaftlich-gemeinverständlicher Darstellungen

28. Band

Schöpfungen der Ingenieurtechnik der Neuzeit

Von

Max Geitel

Ober- und Geh. Regierungsrat im Reichs-Patentamt

Zweite Auflage

Mit 31 Abbildungen im Text

Verlag und Druck von B. G. Teubner in Leipzig und Berlin 1922

Schutzformel für die Vereinigten Staaten von Amerika:Copyright 1922 by B. G. Teubner in Leipzig

Alle Rechte, einschließlich des Übersetzungsrechts, vorbehalten

Vorwort zur zweiten Auflage.

Die Leistungen der Technik der Neuzeit reden eine so machtvolle und überzeugende Sprache, daß – im Gegensatz zu früheren Zeiten – die Kenntnis der wesentlichsten Zweige der Technik zu dem Rüstzeug des Gebildeten gehört. Die Schöpfungen der Ingenieurtechnik nehmen insofern eine besondere und eigenartige Stellung ein, als sie sich der Allgemeinheit am unmittelbarsten vor Augen führen und durch den Segen, den sie bringen, am nachhaltigsten und verständlichsten den Ruhm der Technik von heute predigen.

Überaus schwierig war es, die Auswahl aus der reichen Fülle des Stoffes zu treffen. Wie in der gesamten Technik, so überbietet die Schöpfung der Ingenieurtechnik von heute die von gestern. Was vor wenigen Monaten noch als die Höchstleistung galt, ist oft schon dann veraltet, wenn es aus dem Plan in die Wirklichkeit übertragen wurde. Was der Ingenieur zu Beginn seiner Laufbahn bewunderte, wird häufig von ihm heute belächelt. Der Weltkrieg, der zu einem erheblichen Teile mit technischen Mitteln geführt wurde, hat dies in besonderem Maße bestätigt und Leistungen gezeitigt, die bisher als unerfüllbar galten. Die Auswahl aus den Schöpfungen der Ingenieurtechnik ist, wie in der ersten Auflage, auf solche beschränkt, von denen nach menschlicher Voraussicht anzunehmen ist, daß sie auf längere Zeit hinaus als Meisterwerke gelten werden.

Berlin-Wilmersdorf, im Dezember 1921.

Max Geitel.

Inhaltsverzeichnis.

Seite

Einleitung

5

I. Eiserne Brücken und Hochbauten

7

Die Forthbrücke

10

Die Zambesibrücke

13

Die Hohenzollernbrücke bei Köln

14

Die Hoanghobrücke

16

Die Brücke über den St. Lorenzstrom bei Quebec

18

Der Eiffelturm

19

Die 260 m-Türme der Großstation Nauen

19

Das Woolworth-Gebäude in New York

21

Eisenbetonbauten

22

II. Tunnelbauten

24

Der Simplontunnel

27

Der Lötschbergtunnel

30

III. Kanalbauten

31

Der Panamakanal

31

Der Kaiser-Wilhelm-Kanal (Nord-Ostsee-Kanal)

38

Der Großschiffahrtsweg Berlin–Stettin

41

IV. Staudämme, Talsperren und elektrische Überlandzentralen

44

V. Elektrische Fernbahnen

54

Allgemeines

54

Magdeburg–Leipzig–Halle

57

Die Jungfrau-Bahn

58

Die Lötschberg-Bahn

61

Die Montblanc-Bahn

62

VI. Hoch- und Untergrundbahnen

63

Berlin

65

London

67

Paris

67

New York

68

Philadelphia

69

Chicago

70

VII. Die drahtlose Telegraphie und Telephonie

70

Allgemeines

70

Die Großstation Nauen

74

VIII. Neuzeitliche Riesen-Dampfschiffe

79

Allgemeines

79

»Lusitania«

82

»Mauretania«

82

»Olympic«

82

»Titanic«

82

»Aquitania«

83

»Kronprinzessin Cecilie«

84

»George Washington«

84

»Imperator«

84

»Vaterland«

84

IX. Lenkbare Luftschiffe und Flugzeuge

87

Starre Luftschiffe

88

Halbstarre Luftschiffe

88

Unstarre Luftschiffe

88

Das Luftschiff während des Weltkrieges

93

Eindecker

94

Zwei- und Mehrdecker

97

Das Flugzeug während des Weltkrieges

99

Die Opfer der Flugtechnik

100

X. Technische Kriegsleistungen

101

Allgemeines

101

Das deutsche Ferngeschütz

104

Das Handels-U-Boot »Deutschland«

105

Die Tanks

105

Die Gewinnung des Luftstickstoffes

106

Die Synthese des Ammoniaks

107

Einleitung.

Eine jede Technik ist merkwürdig, wenn sie sich an vorzügliche Gegenstände, ja wohl gar an solche heranwagt, die über ihr Vermögen hinausreichen.

Goethe.

Wenn wir in den nachstehenden Abhandlungen eine Anzahl von Schöpfungen der Ingenieurtechnik der Neuzeit in Wort und Bild vorführen, so fassen wir hierbei das Gebiet der Ingenieurtechnik im weitesten Sinne des Sprachgebrauches auf, nicht in dem engen Sinne der technischen Wissenschaft und Sprachweise. Abraham a S. Clara, das Vorbild des Schillerschen Wallenstein-Kapuziners, erteilt der Stadt Nürnberg folgendes wohlverdiente Lob: »Weit mehr Künstler seynd von dieser Stadt herkommen, als gewaffnete Soldaten gestiegen aus dem großen Trojanischen Pferd, daß man also schier solle diese Stadt nicht mehr Nürnberg, sondern Hirnberg nennen, zumahlen so viel vernünftige und zu allen Künsten capable Köpff anzutreffen«. Von jeher hat der Stand der Ingenieure solche »capable Köpff« unter seinen Gliedern gezählt. Ihnen verdankt die Menschheit von heute einen guten Teil ihres Hochstandes. Zu den verständnisvollsten Kennern und Bewunderern der Technik gehörte Goethe. Mit sicherem Blicke erkannte er dasjenige in der Tätigkeit des Technikers, das diesem die Bewunderung der Mit- und Nachwelt einträgt und das darin besteht, daß er sich an solche Gegenstände heranwagt, die über sein Vermögen hinausgehen oder doch hinauszugehen scheinen. Dieser Wagemut tritt uns in den nachstehend behandelten Beispielen der Ingenieurtechnik in besonders hellem Glanze entgegen. Hierbei werden wir uns, entsprechend der vorstehend gegebenen weiteren Ausdehnung des Begriffes des Ingenieurs, nicht nur mit den Leistungen des Bau- und des Maschinen-Ingenieurs befassen, sondern auch dem Schiffbautechniker und dem Bezwinger der Lüfte und des Raumes sowie dem Ingenieur-Chemiker und dem Kriegs-Ingenieur die verdiente Würdigung widerfahren lassen.

Wir beginnen mit der Beschreibung einiger hervorragender Eisenbauten. Hier sind es die Brücken, die als Überwinder der trennenden Macht der Flüsse und Meeresarme schon seit den ältesten Zeiten bei der Allgemeinheit das Gefühl der Bewunderung und der Dankbarkeit gegen die Erbauer erweckten. Treffend bringt dies Schiller in dem Distichon »Die schöne Brücke« zum Ausdruck:

Unter mir, über mir rennen die Wellen, die Wagen, und gütigGönnte der Meister mir selbst, auch mit hinüber zu gehn. –

Allerdings machen die neuzeitlichen Brückenbauten weniger Anspruch auf Schönheit als auf Sicherheit und Zweckmäßigkeit. Aber unter Würdigung ihrer hohen Bedeutung als Vermittler des Verkehrs, der Kultur, des Austausches körperlicher und geistiger Güter, gewinnen ihre den Gesetzen der zahlenmäßigen Berechnung unterworfenen Formen nicht minder die Weihe der Schönheit als die formvollendetsten zu Stein gewordenen Dichtungen der Architektur. Im Anschluß an die Brückenbauten führen wir die Riesenbauten der Wolkenkratzer vor und einige bemerkenswerte Anwendungen des neuesten Baustoffes, des Eisenbetons. Sodann wenden wir uns der Beschreibung der Durchbohrung eines der größten Bergriesen der Alpenwelt zu, um hierauf einige der hervorragendsten Beispiele aus dem Gebiete des Kanalbaues, auf dem schon unsere Vorfahren Großes leisteten, folgen zu lassen. Auch auf dem Gebiete der die Wasserkräfte der Flüsse und Bäche aufspeichernden Staudämme, denen wir uns alsdann widmen, haben unsre Väter bereits Hervorragendes geleistet. Um so neuzeitlicher sind diejenigen Ingenieurleistungen, denen wir uns in den folgenden Abschnitten widmen: die elektrische Kraftverteilung, die elektrischen Fernbahnen, die Hoch- und Untergrundbahnen unsrer Riesenstädte, die den Ozean durchquerenden Riesenpaläste, die den Traum des Dädalus erfüllenden Luftschiffe und Flugzeuge, der jüngste Triumph in der Meisterung der Naturkräfte: die drahtlose Telegraphie und die hervorragendsten durch den Weltkrieg gezeitigten Ingenieurleistungen.

Mehrere der von uns zu behandelnden Schöpfungen der Ingenieurtechnik können füglich zu den sieben Weltwundern der Neuzeit gerechnet werden. Allerdings ist die Bemessung des Begriffes »Wunder« in hohem Maße von der Auffassung des einzelnen abhängig. Eine amerikanische technische Zeitschrift hat den Versuch gemacht, durch eine bei ihren Lesern gehaltene Umfrage festzustellen, welche sieben Weltwunder der Neuzeit an die Stelle der mit Ausnahme der Pyramiden vom Erdboden verschwundenen sieben Weltwunder des Altertums zu setzen seien. Die überwiegende Mehrzahl der abgegebenen Stimmen stellte die sieben Weltwunder der Neuzeit in der nachfolgend wiedergegebenen Reihenfolge hin: 1. die drahtlose Telegraphie, 2. das Telephon, 3. der Flugapparat, 4. das Radium, 5. die Antiseptika, 6. die Spektralanalyse, 7. die X-Strahlen. Eine große deutsche Tageszeitung erließ die gleiche Umfrage. Die hier abgegebenen Stimmen vereinigten sich in der nachstehenden Reihenfolge auf die drahtlose Telegraphie, den Panamakanal, das lenkbare Luftschiff, die Flugmaschine, die Radiumanwendung, den Kinematograph, den Riesendampfer »Imperator«.

I. Eiserne Brücken- und Hochbauten.

Die gewaltige Entwicklung, die der Brückenbau in den letzten Jahrzehnten genommen hat, und die uns in der Überbrückung immer größerer Spannweiten entgegentritt, hat zweierlei Quellen, die beide aus der wissenschaftlichen Vertiefung entspringen, die die Technik im allgemeinen und die Ingenieurtechnik im besonderen genommen hat. Zunächst ist hier die Vervollkommnung der verschiedenen auf die Darstellung von Eisen und Stahl abzielenden Arbeitsverfahren zu nennen. Sodann war es die Ausgestaltung und Anwendung der Mathematik und Mechanik durch Ritter, Culmann, Schwedler, Müller-Breslau u. a. m., die in der sog. graphischen Statik dem Ingenieur das Mittel in die Hand gab, um die in den einzelnen Teilen der Bauwerke auftretende Inanspruchnahme nicht nur rechnerisch, sondern auch zeichnerisch festzulegen und die einzelnen Bauteile mit dem Aufwand geringsten Materials und doch vollkommen sicher auszuführen.

Im Jahre 1778 wurde die erste noch heute in Benutzung befindliche eiserne Brücke bei Iron-Bridge in England erbaut. Sie hat eine Spannweite von 33 m. Im Laufe der Jahrzehnte erhöhten sich die Spannweiten allmählich mit der Vervollkommnung der Eisendarstellung und des wissenschaftlichen Rüstzeuges zu früher nicht geahnten Ausmaßen. Nachstehend bringen wir eine kleine Auslese aus den größten eisernen Brücken der Erde.

Abb. 1. Die Wupperbrücke bei Müngsten.

Spannweite:

Zambesibrücke

152,4 m

Nordostsee-Kanal-Brücke bei Grünental

156,8 m

Hohenzollernbrücke bei Köln

159,92 m

Dourobrücke bei Oporto

160,00 m

Wupperbrücke bei Müngsten (Abb. 1)

160,00 m

Nordostsee-Kanal-Brücke bei Levensau

163,40 m

Garabit-Viadukt

165,00 m

Niagarabrücke

167,64 m

Viaur-Viadukt

220,00 m

Mississippibrücke bei Memphis

240,00 m

Höllentor-Brücke über den East River bei New York

298,00 m

Forth-Brücke (Abb. 2)

521,20 m

Brücke über d. St. Lorenzstrom bei Quebec

548,64 m

Besonders große Spannweiten weisen die neuzeitlichen Hängebrücken auf. Wir nennen hier:

Spannweite:

Die Niagarabrücke mit

250,34 m

Die East-River-Brücke bei New York mit

487,60 m

Die projektierte Hudsonbrücke bei New York mit

987,55 m

Abb. 2. Die Brücke über den Firth of Forth.

Aus der Zahl der großen Brückenbauten eine geeignete Auswahl zu treffen, ist eine schwierige Aufgabe. Immerhin ist bezüglich der nachstehend beschriebenen fünf großen Brückenbauten festzustellen, daß jede derselben eine eigenartige Stellung einnimmt: die Forthbrücke fordert unsre Bewunderung durch ihre gewaltigen Abmessungen heraus; bei der Zambesibrücke waren erhebliche örtliche Schwierigkeiten zu überwinden; der Bau der Hohenzollernbrücke bei Köln mußte sich unter überaus schwierigen Verhältnissen vollziehen, da es sich hier um den Ersatz einer einen außerordentlich regen Eisenbahnverkehr vermittelnden Riesenbrücke handelte; die Hoanghobrücke fesselt uns durch ihre riesenhaften Abmessungen und die aus der entlegenen Lage des Bauplatzes sich ergebenden Schwierigkeiten; der Bau der St. Lorenzbrücke wurde zweimal durch schwere Unfälle unterbrochen, die die Fertigstellung um Jahre verzögerten.

Die Tatsache, daß der Bau der Forthbrücke überhaupt beabsichtigt und ausgeführt wurde, bildet einen Beleg für die Richtigkeit des Spruches: »Zeit ist Geld«, denn die durch den Bau der Brücke und der erforderlichen Nebenanlagen verschlungene Summe beläuft sich auf insgesamt 67 400 000 Mk., während die erreichte Entfernungsverminderung nur den sehr geringen Betrag von 40 km ausmacht, also eine Strecke, für deren Bewältigung das Dampfroß noch nicht den Aufwand einer halben Stunde gebraucht. Ein von Bouch, dem Erbauer der am 28. Dezember 1879 mit einem vollbesetzten Personenzuge durch einen Sturm in die Tiefe gerissenen Tay-Brücke, herrührender Plan war abgelehnt worden. An Stelle desselben entschied man sich für einen von den Ingenieuren John Fowler und Benjamin Baker aufgestellten Entwurf. Dieser sah eine Brücke nach dem von dem Deutsch-Amerikaner Gerber bereits bei der Niagarabrücke mit Erfolg angewandten Kantilever-, Ausleger-, Krag- oder Konsol-System vor. Das Kennzeichen dieser Bauweise besteht darin, daß die Brücke ohne Anwendung eines dieselbe stützenden Baugerüstes von beiden Ufern aus konsolartig vorgebaut wird, bis sie in der Mitte, hoch über den Fluten zum Schluß gebracht wird.

Die in Abb. 2 in einer Gesamtansicht dargestellte Brücke überspannt mit zwei Öffnungen von je 521,20 m lichter Weite den Firth of Forth. Um den den Meeresarm befahrenden Schiffen den Durchgang zu gestatten, liegen die Eisenbahnschienen in einer Höhe von 47,7 m über dem Wasserspiegel. Die die Konsolen oder Ausleger nach beiden Seiten hin entsendenden Mittelpfeiler sind 107 m hoch. Die Gesamtlänge der Brücke beträgt 2466,1 m. Die Anwendung der Kantilever- oder Konsol-Bauart erschien im vorliegenden Falle um deswillen geboten, weil die Tiefe des Meeresarmes an der zu überbrückenden Stelle 60 m beträgt, und daher die Aufstellung eines Baugerüstes der Brücke unmöglich war. Demnach begann man den Bau zunächst mit der Errichtung der beiden großen, aus je 4 Eckpfeilern bestehenden Mittelpfeiler, von denen aus dann die gewaltigen eigentlichen Träger, die Konsolen oder Ausleger, nach beiden Seiten hin vorgebaut wurden. Diese zielbewußt und ohne erheblichen Unfall ausgeführte Leistung ist in höchstem Maße bewunderungswürdig, wenn man sie mit dem Bau des Eiffelturmes (Abb. 7) vergleicht, denn jeder von den Mittelpfeilern ausladende Brückenarm entspricht einem Eiffelturm. Ist schon der senkrechte Aufbau des letzteren als eine Ingenieurleistung ersten Ranges zu bezeichnen, um wieviel mehr muß dies von dem wagerecht in schwindelnder Höhe erfolgten gerüstlosen Vortrieb dieses Riesenturmes gelten. Zwischen den Endpunkten der von den Mittelpfeilern nach beiden Seiten hin ausladenden Konsolen wird der noch zu überbrückende Teil der Spannweite durch einen mit Hilfe von Gelenken eingeschalteten Fachwerksträger überspannt. Diese Bauart wird als Kantilever- oder Konsolbrücke mit freischwebenden Stützpunkten benannt und findet dort Anwendung, wo aus irgendwelchen Gründen die Errichtung eines Baugerüstes zwischen den Stützpunkten nicht möglich, und die Spannweite besonders groß ist. Abb. 3 zeigt ein lebendes Modell der Forthbrücke: Die beiden auf Stühlen sitzenden Personen entsprechen den beiden Hauptpfeilern, während der mittlere, gelenkige Teil der Brücke durch den von der mittleren Person eingenommenen Sitz dargestellt wird. Die Arme der beiden ersteren Personen sind als Konsolen ausgebildet. Die über dem Wasser liegenden Konsolen tragen das gelenkige Zwischenstück, während die dem Lande zugekehrten Konsolen hier durch Fundamente gesichert sind.

Abb. 3. Lebendes Modell der Forthbrücke.

Für jeden der 4 Eckpfeiler eines jeden Hauptpfeilers wurde ein Mauerkörper von 15 m Durchmesser errichtet; die Verankerung der Eckpfeiler auf diesen Mauerkörpern erfolgte durch 48 Stahlbolzen von 65 mm Stärke. Der südliche Pfeiler ist auf eisernen Sinkkästen, Caissons, ausgebaut, die unter Anwendung von Druckluft durch die hier vorhandene starke Schlammschicht bis auf den festen Baugrund hinabgesenkt wurden. Ein solcher Sinkkasten hatte einen Durchmesser von 21,3 m. Drei derselben wurden ohne Unfall an den Ort ihrer Bestimmung gebracht. Bei der Verlegung des vierten Kastens aber ereignete sich am Neujahrstage 1885 ein schwerer, den Bau stark verzögernder Unfall. An diesem Tage ruhte die Arbeit. Der Kasten, der glücklich bis an die Stelle gebracht war, wo er versenkt werden sollte, setzte sich so tief im Schlamm fest, daß die Flut ihn nicht zu heben vermochte. Er füllte sich mit Wasser, neigte sich zur Seite und wurde außerdem noch 4½ m von der ihm bestimmten Stelle abgetrieben. Endlich, im Oktober, wurde der Caisson an seinen richtigen Ort gebracht. Auch die beiden südlichen Eckpfeiler des Mittelpfeilers ruhen auf Sinkkästen. Die Lage des nördlichen Pfeilers ermöglichte es, daß dessen Fundamente durchgehends unter Anwendung von Fangdämmen ausgeführt werden konnten. Die Pfeiler und die Konsolen sind aus röhrenförmigen Säulen und Streben zusammengefügt. Der Durchmesser dieser Röhren beträgt bis zu 3,66 m. Überaus schwierig gestaltete sich die Ausführung der Knotenpunkte, das sind die Verbindungen zwischen den einzelnen Röhren und Streben. Die Brücke weist Stellen auf, wo zehn verschiedene Teile von ungewöhnlichen Abmessungen und Formen zusammenstoßen und miteinander verbunden werden mußten. Um diese Verbindungen zu erleichtern, ließ man den kreisförmigen Querschnitt der Röhren in der Nähe der Knotenpunkte in eine viereckige Form übergehen. Das Hinausbauen der Konsolen geschah in der Weise, daß durch hydraulische Nietmaschinen die einzelnen Rohrteile und Bleche voreinandergebracht wurden. Hierbei war dafür Sorge zu tragen, daß die beiden nach verschiedenen entgegengesetzten Richtungen ausladenden Konsolen gleichmäßig vorgetrieben wurden, damit der Hauptpfeiler nicht einseitig belastet und zum Kippen gebracht wurde. Beide Konsolen mußten sich also während des gesamten Bauvorganges das Gleichgewicht halten. Die mit Hilfe der Nietmaschinen voreinander gebrachten Teile mußten, bevor sie mit den bereits fertiggestellten Teilen in feste Verbindung gebracht werden konnten, durch Hilfskonstruktionen abgestützt werden. Der dem Fortgang des Vortriebes der Konsolen entsprechende Vorschub der Nietmaschinen geschah auf hydraulischem Wege. Besondere Sorgfalt erforderte auch die Innehaltung der Richtung bei dem Vorbau der Konsolen. Das zwischen diesen liegende bewegliche Schlußglied wurde zunächst in fester Verbindung mit jenen ausgeführt und erst nach erfolgter Fertigstellung an seinen beiden Enden auf Rollen gelegt. Die gewaltigen Abmessungen der Brücke spiegeln sich u. a. in dem Einfluß wider, den die Erhöhung der Luftwärme auf das Baumaterial ausübt. Die aus dem Temperaturunterschied entspringenden Längsverschiebungen betragen fast 1 m; bescheint die Sonne die Brücke einseitig, so hat dies eine Bewegung von 0,2 m senkrecht zur Brückenachse zur Folge.

Am 4. März 1890 wurde die Brücke ihrer Bestimmung übergeben.

Die im Zuge der Kap-Kairo-Eisenbahn den Zambesifluß unterhalb der Viktoriafälle überspannende Brücke ist in ihrem Hauptteile ebenfalls nach dem Kantilever- oder Auslegersystem erbaut. Dieser den reißenden Strom übersetzende Hauptteil ist gleich der Forthbrücke ohne Gerüst von beiden Ufern aus vorgebaut und hat eine lichte Weite von 152,4 m; die Pfeilhöhe des Bogens der Eisenkonstruktion beträgt 27,4 m. Die Brücke liegt fast unmittelbar unterhalb der Fälle, die bei über 1600 m Breite die Fluten des Zambesi in eine Tiefe von 140 m hinabstürzen lassen. Die Gesamtlänge der Brücke beträgt 198 m, also ein keineswegs ungewöhnliches Maß. Was aber den Bau, insbesondere dessen Vorarbeiten überaus schwierig gestaltete, das waren außergewöhnliche örtliche Verhältnisse. Diese ergaben sich aus der großen Höhe der steil aus den Wirbeln des Stromes emporragenden Felsufer und hatten zur Folge, daß die Brücke von beiden Ufern aus in der schwindelnden Höhe von 115 m über dem Wasserspiegel vorgebaut werden mußte. Um das Maß der Entfernung der beiden Ufer festzustellen, wurde eine Rakete, an der ein dünnes Seil befestigt war, über den Fluß geschleudert und mit Hilfe dieses Seiles ein Telephondraht über den Fluß gespannt, und außerdem ein Stahldraht zum Messen der Entfernung gezogen. Der Telephondraht war erforderlich, weil, um von einem zum andern Ufer zu gelangen, ein Umweg von 16 km zurückzulegen war. Der den Bau leitende Ingenieur C. Beresford Fox begnügte sich aber nicht mit der telephonischen Verständigung, sondern ließ an einem über den Fluß gespannten Drahtseil ein Sitzbrett anbringen, auf dem er sich mittels eines endlosen Seiles in schwindelnder Höhe von der einen zu der andern Baustelle ziehen ließ. Um die während des Baues etwa abstürzenden Arbeiter vor dem sichern Tode des Ertrinkens zu bewahren, wurde ein Schutznetz über den Strom ausgespannt.

Abb. 4. Das Westportal der Hohenzollernbrücke bei Köln.

Die am 5. Oktober 1859 nach 4½jähriger Bauzeit eröffnete, von der Köln-Mindener Eisenbahngesellschaft mit einem Aufwand von 3 927 434 Talern gleich rund 11 780 000 Mk. erbaute Kölner Rheinbrücke (eine Gitterbrücke mit 4 Öffnungen) genügte bereits seit geraumer Zeit nicht mehr den erhöhten Anforderungen, die der zunehmende Verkehr an sie stellte. Dieser war von 8–10 täglich die Brücke befahrenden planmäßigen Zügen auf 380 gestiegen. Am 19. Juni 1907 wurde mit dem Bau der an die Stelle dieser alten Rheinbrücke tretenden Hohenzollernbrücke, Abb. 4, begonnen. Diese hat nur 3 Öffnungen, deren mittlere 159,92 m und deren beiden seitlichen Öffnungen je 116 m Lichtweite besitzen. Der Bau dieser neuen Brücke, einer Bogenbrücke mit angehängter Fahrbahn, gestaltete sich um deswillen schwierig, weil während der Bauzeit der Straßenverkehr und der Eisenbahnbetrieb aufrecht zu erhalten waren, und außerdem schiffahrtspolizeiliche Erschwernisse zu überwinden waren.

Abb. 5. Das Ausfahren der alten Rheinbrücke bei Köln.

Der Entwurf des ingenieurbautechnischen Teiles wurde im Mini