Фармакология может быть доступной. Иллюстрированное пособие для врачей и тех, кто хочет ими стать - Ренад Аляутдин - E-Book

Фармакология может быть доступной. Иллюстрированное пособие для врачей и тех, кто хочет ими стать E-Book

Ренад Аляутдин

0,0

Beschreibung

В книге доступно изложены основные положения и принципы фармакологии, представлены сведения по фармакокинетике и фармакодинамике, дано описание наиболее важных групп лекарственных препаратов. Специальный раздел посвящён проблеме отравлений лекарственными средствами. Издание ориентировано не только на фундаментальные, но и на клинические вопросы. Книга будет полезна студентам медицинских и фармацевтических вузов, а также врачам и провизорам.

Sie lesen das E-Book in den Legimi-Apps auf:

Android
iOS
von Legimi
zertifizierten E-Readern
Kindle™-E-Readern
(für ausgewählte Pakete)

Seitenzahl: 304

Das E-Book (TTS) können Sie hören im Abo „Legimi Premium” in Legimi-Apps auf:

Android
iOS
Bewertungen
0,0
0
0
0
0
0
Mehr Informationen
Mehr Informationen
Legimi prüft nicht, ob Rezensionen von Nutzern stammen, die den betreffenden Titel tatsächlich gekauft oder gelesen/gehört haben. Wir entfernen aber gefälschte Rezensionen.



Ренад Аляутдин Фармакология может быть доступной. Иллюстрированное пособие для врачей и тех, кто хочет ими стать

© Аляутдинов Р. Н., текст, 2024

© ООО «Издательство «Эксмо», 2024

* * *

Введение

При анализе зубных камней неандертальцев, живших в пещере Эль-Сидрон 50000 лет назад, выяснилось, что их диета включала тысячелистник и ромашку, горькие на вкус растения с небольшой питательной ценностью. По итогам более раннего исследования той же группы было определено, что у неандертальцев в Эль-Сидроне был ген вкуса горьких веществ. Неандертальцы сочли бы эти растения горькими, поэтому вполне вероятно, что эти травы были выбраны по причинам, отличным от вкуса. Невозможно точно сказать, с какой целью неандертальцы ели побеги тысячелистника и ромашки, но сегодня люди используют их как лекарственные растения.

Фармакология – это фундаментальная наука, которая вышла на передний план современной медицины за счет грандиозных успехов и достижений XX–XXI века в области сохранения здоровья и спасения жизней людей. Фармакология изучает лекарственные средства (ЛС) и их влияние на жизненные процессы. ЛС – это вещества или их комбинации, которые применяют для лечения, диагностики и профилактики заболеваний. К ЛС относятся фармацевтические субстанции и лекарственные препараты.

Время возникновения фармакологии как науки во многом зависит от точки зрения самого читателя. ЛС, созданные на основе растений, тканей животных, минералов, описаны в древнем Египте, Китае, Центральной Азии в 2000-х годах до нашей эры. Хорошо известен вклад в развитие лекарственной терапии Гиппократа, Цельса, Авиценны. Тем не менее существует мнение, что фармакология – наука очень молодая, существующая менее 150 лет, и она появилась благодаря возможности выделять чистые соединения и использовать научные методы исследований. Ниже приведены некоторые важнейшие вехи в развитии фармакологии и имена великих ученых, совершивших эти открытия.

Таблица 1. Развитие фармакологии с течением времени

Наименования ЛП. Лекарственные средства имеют несколько типов наименований. Как правило, это международное непатентованное наименование (МНН), торговое наименование и химическое наименование. МНН ЛС – уникальное наименование фармацевтической субстанции, рекомендованное Всемирной организацией здравоохранения (ВОЗ). Будучи уникальными именами, МНН должны различаться по звучанию и написанию и их нельзя путать с другими общеупотребительными именами (в качестве примера приведу МНН ЛП амоксициллин). Важная особенность системы МНН заключается в том, что названия фармакологически родственных веществ демонстрируют свое родство с использованием общей «основы» в наименовании. Так, например, ЛП группы пенициллина имеют в конце наименования сочетание «-циллин» (амоксициллин, ампициллин, оксациллин); блокаторы ангиотензиновых рецепторов – «-сартан» (валсартан, телмисартан).

Торговое наименование ЛС – наименование лекарственного средства, присвоенное его разработчиком (одно из торговых наименований амоксициллина – амоксил).

Химическое наименование ЛС – название, которое присваивается в соответствии с требованиями Международного союза по чистой и прикладной химии (IUPAC); химическое наименование амоксициллина [2S[2альфа5альфа,ббета(S*)]]-6-[[Амино-(4гидроксифенил) ацетил] амино]-3,3-диметил-7-ок-со-4-тиа-1-азабицикол [3.2.0] гептан-2карбоновая кислота.

Создание лекарственных средств. Источниками получения ЛС являются лекарственные растения (так получают морфин, сердечные гликозиды, атропин), ткани и органы животных (ферментные препараты панкреатин, гидролизат белков мозга церебролизин), продукты жизнедеятельности человека (гонадотропин хорионический получают из мочи беременных женщин), микроорганизмы (антибиотики), генномодифицированные микроорганизмы (продуценты инсулинов, других белковых препаратов), химический синтез низко- и высокомолекулярных соединений.

От идеи создания ЛС до его регистрации проходит около 10 лет. Вначале определяется мишень для ЛС, которую, как правило, открывают патофизиологи или молекулярные биологи. Долгое время для создания экспериментальной молекулы будущего лекарства использовали и до сих пор используют известные эндогенные соединения и на основе их структуры создаются новые лекарственные препараты. Так, например, по аналогии с молекулой гистамина были созданы ангистаминные средства – блокаторы гистаминовых рецепторов. В настоящее время, когда структура многих белков в организме известна, формулу нового лекарства рассчитывают с помощью компьютерных программ (in silico): посредством моделирования создается молекула, которая будет взаимодействовать с активными центрами белковой мишени. После завершения химического синтеза начинается доклинический этап исследований на моделях in vivo, а сейчас все чаще – на клеточных моделях in vitro, с целью выяснения механизма действия и эффективности. Важное значение имеет оценка безопасности будущего лекарства. После трагедии, связанной с применением талидомида в 1961 году ВОЗ учредила Программу по международному мониторингу за безопасностью ЛС. Талидомидовая трагедия положила начало международному фармакологическому надзору. В период с 1956 по 1961 год ЛС «Талидомид» было разрекламировано как идеальное седативное средство, в том числе для беременных. Это лекарство было разрешено в 56 странах. Однако талидомид обладал способностью вызывать врожденные уродства, то есть обладал так называемым тератогенным действием. В тот период времени родились от 8 до 12 тысяч младенцев с деформациями конечностей. Сейчас установлено, что талидомид является антагонистом эндотелиального фактора роста, стимулирующего рост сосудов. Блокада фактора роста приводила к тому, что наиболее длинные сосудистые ветви, расположенные в конечностях, не формировались, а значит, не формировались и сами конечности. Но тогда об этом никто не знал.

Согласно международным требованиям ЛС до его регистрации исследуют вначале на животных или клеточных моделях in vitro. На этом этапе оценивают различные виды токсического действия (тератогенность, эмбрио-, генотоксичность, канцерогенез и т. д.). Затем проводят клинические исследования (КИ) в 3 этапа: 1-я фаза исследования проводится на 20–100 здоровых испытуемых с целью изучения переносимости ЛС, его фармакокинетики, на этой стадии могут быть обнаружены часто возникающие нежелательные реакции. Во второй фазе КИ участвуют несколько сотен пациентов с заболеванием, для лечения которого было создано ЛС. На этом этапе оценивается, эффективно ли новое лекарство. Третья фаза КИ проводится на контингенте, насчитывающем до нескольких тысяч пациентов, с целью определения эффективности ЛС (его пользы) и его безопасности, т. е. способности вызывать нежелательные воздействия (оценка степени риска). В том случае, если соотношение польза/риск оптимально и превышает этот показатель у ранее существовавших средств, новое ЛС получает право на жизнь.

Если ЛП проходит все этапы дорегистрационных клинических исследований, почему в процессе гражданского оборота ЛП возникают новые побочные действия? Дело в том, что при клиническом дорегистрационном исследовании ЛП на нескольких тысячах пациентов невозможно выявить побочные эффекты, которые встречаются редко, однако могут быть очень опасными (часто это гепатотоксичность, нефротоксичность). В связи с этим исследование безопасности ЛП проводится на протяжении всей его жизни. С этой целью уполномоченные органы страны и производители отслеживают сообщения о нежелательных реакциях на ЛС в научной литературе, социальных сетях, а также предлагают врачам, провизорам, пациентам информировать о таких случаях, заполнив специальное извещение о побочном действии.

Вопросы

1. Кроме термина «ЛС», употребляются термины «фармацевтическая субстанция» и «лекарственный препарат». Как они соотносятся между собой?

Фармацевтическая субстанция – это тип лекарственного средства в виде одного или нескольких обладающих фармакологической активностью действующих веществ вне зависимости от природы происхождения, предназначенных для производства, изготовления лекарственных препаратов. Именно фармацевтическая субстанция определяет эффективность ЛС.

Лекарственные препараты (ЛП) – это ЛС в виде лекарственных форм – таблеток, капсул, растворов, мазей и т. д.

2. Часто в прессе можно встретить понятия «ЖНВЛП», «орфанные лекарственные препараты». Что это такое?

ЖНВЛП – перечень жизненно необходимых и важнейших лекарственных препаратов, утверждаемый Правительством Российской Федерации, обеспечивающих приоритетные потребности здравоохранения.

Орфанные лекарственные препараты – это ЛП, предназначенные исключительно для диагностики или патогенетического лечения (лечения, направленного на механизм развития заболевания, но не симптомов) редких (орфанных) заболеваний. Список орфанных заболеваний формируется Министерством здравоохранения России.

3. Какая разница между оригинальным и воспроизведенным ЛП (генериком или дженериком)?

Оригинальный лекарственный препарат – лекарственный препарат с новым действующим веществом, который зарегистрирован первым в Российской Федерации или в других государствах на основании результатов доклинических исследований лекарственных средств и клинических исследований лекарственных препаратов, подтверждающих его качество, эффективность и безопасность. Оригинальный лекарственный препарат имеет патентную защиту, максимальный срок которой может составлять 20 лет. В течение этого времени ни одна другая компания не может производить или продавать этот ЛП.

Когда оригинальное ЛС теряет эксклюзивность, появляется возможность подать заявку на регистрацию и производство этого ЛС другими производителями. Воспроизведенный ЛП (генерик) имеет эквивалентный оригинальному ЛП качественный и количественный состав действующих веществ в эквивалентной лекарственной форме. Он намного дешевле оригинального, поскольку второму производителю не нужно возмещать затраты на открытие новой молекулы, разработку, доклинические и клинические исследования этого ЛП.

Дозы лекарственных веществ

Различают терапевтические, токсические и летальные дозы.

Терапевтические дозы подразделяются на

• минимальные терапевтические (действующие);

• средние терапевтические;

• высшие терапевтические.

Минимальные терапевтические (действующие) дозы (пороговые дозы) вызывают минимальный терапевтический эффект. Обычно они в 2–3 раза меньше средней терапевтической дозы.

Средние терапевтические дозы оказывают на большинство больных необходимое фармакотерапевтическое действие.

Ударная доза – доза, превышающая среднюю терапевтическую дозу.

С нее обычно начинают лечение противомикробными средствами (антибиотиками, сульфаниламидами) для быстрого создания высокой концентрации вещества в крови. После достижения определенного терапевтического эффекта назначают поддерживающие дозы.

При длительном применении ЛВ указывается его доза на курс лечения (курсовая доза).

Высшие терапевтические дозы – предельные дозы, превышение которых может привести к развитию токсических эффектов. Их назначают, если применение средних доз не оказывает желаемого действия.

Токсические дозы – дозы, оказывающие токсическое действие на организм.

Летальные дозы (от лат. letum – смерть) – дозы, вызывающие смертельный исход (определяется на стадии доклинических испытаний).

Диапазон доз от минимальной действующей до минимальной токсической определяется как широта терапевтического действия. Чем она больше, тем безопаснее применение ЛС.

Повторное введение лекарственных веществ

Повторные введения одного и того же ЛВ могут приводить к количественному (увеличение или уменьшение) и качественному изменению фармакологических эффектов.

Явления, возникающие при повторных введениях ЛС

Кумуляция (от лат. cumulatio – увеличение, скопление) – накопление в организме ЛВ или вызываемых им эффектов.

Материальная кумуляция – увеличение в крови и/или тканях содержания ЛВ после каждого последующего введения по сравнению с предыдущим. При повторных введениях могут накапливаться ЛВ, медленно инактивируемые и выводимые из организма, а также ЛВ, прочно связывающиеся с белками плазмы крови или депонирующиеся в тканях, например некоторые снотворные средства из группы барбитуратов, препараты наперстянки. Материальная кумуляция может быть причиной токсических эффектов, что необходимо учитывать при дозировании таких препаратов.

Функциональная кумуляция – усиление эффекта ЛВ при повторных введениях при отсутствии повышения его концентрации в крови и/или тканях. Этот вид кумуляции может возникать при длительных повторных приемах алкоголя. При развитии алкогольного психоза («белая горячка») у восприимчивых лиц бред и галлюцинации развиваются в то время, когда этиловый спирт уже метаболизировался и не определяется в организме.

Сенсибилизация. Многие ЛВ образуют комплексы с белками плазмы крови, которые приобретают при определенных условиях антигенные свойства. Это сопровождается образованием антител и сенсибилизацией организма. Повторное введение тех же ЛВ вызывает аллергические реакции. Часто такие реакции возникают при повторных введениях пенициллинов, прокаина, водорастворимых витаминов, сульфаниламидов.

Привыкание (толерантность, от лат. tolerantia – терпение) – уменьшение фармакологического эффекта ЛВ при его повторных введениях в той же дозе. При развитии привыкания для достижения прежнего эффекта необходимо увеличивать дозу ЛВ.

Привыкание к ЛВ, стимулирующим рецепторы (к агонистам рецепторов), может быть обусловлено снижением чувствительности (десенситизацией) рецепторов и/или уменьшением их плотности (количества).

Привыкание к некоторым ЛВ связано с изменением их фармакокинетики (уменьшением всасывания, увеличением скорости метаболизма и/или выведения). Так, основной причиной привыкания к фенобарбиталу считают активацию его метаболизма вследствие индукции ферментов печени, вызываемой самим фенобарбиталом.

Частный случай привыкания – тахифилаксия (от греч. tachys – быстрый, phylaxis – защита) – быстрое развитие привыкания при повторных введениях препарата через короткие промежутки времени (10–15 мин.).

Лекарственная зависимость. Это настоятельная потребность (непреодолимое стремление) в постоянном или периодически возобновляемом приеме определенного ЛВ или группы веществ. Вначале вещество принимают для достижения состояния эйфории, благополучия и комфорта, устранения тягостных переживаний, испытания новых ощущений. Однако через определенное время потребность в повторном приеме становится непреодолимой, что усугубляется синдромом отмены: возникновением при прекращении приема данного вещества тяжелого состояния, связанного с психическими и соматическими нарушениями (нарушениями функций органов и систем организма). Такое состояние обозначают термином «абстиненция» (от лат. abstinentia – воздержание).

Различают психическую и физическую лекарственную зависимость.

Психическая лекарственная зависимость характеризуется резким ухудшением настроения и эмоциональным дискомфортом, ощущением усталости при лишении препарата. Она возникает при применении кокаина и других психостимуляторов (амфетамина), галлюциногенов (диэтиламид лизергиновой кислоты, LSD-25), никотина, индийской конопли (анаша, гашиш, план, марихуана).

Физическая лекарственная зависимость характеризуется не только эмоциональным дискомфортом, но и возникновением синдрома абстиненции – состояния, включающего объективные и субъективные нарушения.

Физическая лекарственная зависимость развивается к опиоидам (героину, морфину), барбитуратам, бензодиазепинам, алкоголю (этиловому спирту).

Вопрос

Правильно ли я понял, что привыкание и лекарственная зависимость совсем не одно и то же?

Да, это так. Привыкание, снижение эффективности ЛС, с течением времени характерно при приеме многих групп лекарственных препаратов и может развиваться как на уровне синаптической передачи (эфедрин), так и на системном уровне (антигипертензивные средства). Лекарственная зависимость, непреодолимое желание к повторному приему ЛС характерна для небольшого числа ЛС, которые подлежат особому учету и должны назначаться в течение ограниченного времени. Возможно, смешение этих понятий связано с тем, что для опиоидов, вызывающих тяжелую лекарственную зависимость, характерно развитие зависимости и привыкания.

Фармакодинамика

Фармакодинамика – это изучение механизмов действия, посредством которого лекарства производят свои фармакологические эффекты.

Важнейшим разделом фармакодинамики является рецепторная теория, которая прошла долгий и сложный путь развития. Пауль Эрлих выдвинул постулат в отношении концепции рецепторов: corpora non agunt nisi ixata (вещества не действуют, пока не свяжутся), – и первым сравнил взаимодействие вещества и рецептора с ключом и замком. Уверенность в универсальности своей формулы остановила П. Эрлиха в шаге от открытия гематоэнцефалического барьера. Он ввел краситель метиленовый синий внутривенно мышам и обнаружил, что все органы, кроме мозга, окрасились в синий цвет. Он сделал вывод, что в мозге нет рецепторов к метиленовому синему. Лишь позже его ученик Э. Голдман ввел краситель в мозг мыши и увидел, что тот окрасился в синий цвет, а остальные органы – нет.

Основными субстратами для лекарственных средств в организме являются рецепторы, ферменты, транспортные системы и каналы.

Рецепторы, взаимодействующие с лекарственными средствами, представляют собой специализированные макромолекулы-мишени (в основном это белковые молекулы – липопротеины, гликопротеины, нуклеопротеины и др.), которые связываются с эндогенными медиаторами, гормонами, аутокоидами. Лекарственные средства, имеющие сродство (аффинитет) с этими рецепторами, действуют либо подобно эндогенным биологически активным веществам, либо блокируют их действие.

Рецептор выполняет двойственную роль: он должен распознать связывающуюся с ним молекулу и преобразовать полученный сигнал в ответ. В соответствии с этими задачами рецептор имеет распознающий домен и эффекторный домен. Образование комплекса ЛС – рецептор приводит к биологической реакции. Величина ответа пропорциональна количеству комплексов ЛС – рецептор.

Молекулы (например, ЛС, гормоны, медиаторы), которые связываются с рецептором, называются лигандами. Способность лиганда связываться с данным рецептором зависит от его сродства (аффинности) к рецептору, а способность активировать рецепторы и приводить к клеточному ответу зависит от внутренней активности лиганда. Сродство и активность лекарства определяются его химической структурой и не зависят друг от друга. Таким образом, степень, в которой лиганд способен вызывать возбуждение рецептора, ведущее к клеточному ответу, называется внутренней активностью.

Вопрос

Почему рецептор и лиганд связываются друг с другом?

Рецептор является белковой молекулой, состоящей из различных аминокислот, имеющих неоднородное электрическое поле. Это приводит к образованию структуры, имеющей уникальное расположение электрических зарядов. Соответственно, лиганд будет иметь противоположные заряды, позволяющие связаться с участком рецептора. В случае обратимой связи рецептор-лиганд взаимодействие обеспечивается ионными, водородными, гидрофобными, Ван-дер-Ваальсовыми силами. При необратимом связывании между рецептором и лигандом возникает ковалентная связь.

Лиганды в зависимости от результата связывания с рецептором делятся на агонисты и антагонисты.

Агонисты активируют рецепторы, вызывая желаемый ответ. Агонист, который вызывает максимальный ответ, называется полным агонистом, его внутренняя активность принимается за 1. Однако не все агонисты способны вызывать максимальный ответ. Если активность лигандов, например ЛС, меньше 1, такие ЛС называют частичными агонистами. Многие гормоны, медиаторы (например, ацетилхолин, гистамин, норадреналин) и ЛС (например, пилокарпин, ксилометазолин, бензодиазепины, окситоцин) действуют как агонисты.

Антагонисты – это группа ЛС, которые предотвращают активацию рецепторов. Предотвращение активации рецепторов может вызывать много фармакологических эффектов. Так, антагонисты усиливают клеточную функцию, если они блокируют действие какой-либо тормозной системы организма, которое обычно снижает клеточную функцию (так, блуждающий нерв угнетает активность синоатриального узла сердца и уменьшает частоту сердечных сокращений; атропин блокирует рецепторы, через которые осуществляется угнетение, и за счет этого увеличивает частоту сердечных сокращений). В то же время антагонисты снижают клеточную функцию, если они блокируют действие вещества, которое обычно повышает клеточную функцию (М-холиноблокатор атропин снижает стимулирующее действие ацетилхолина на секрецию слюнных желез, что приводит к снижению секреции и ощущению «сухости во рту»).

Выделяют несколько типов антагонистов.

Конкурентный антагонизм

Если агонист и антагонист конкурируют за связывание с одним и тем же рецептором, то антагонист называют конкурентным (блокатор). При этом взаимодействие агониста и антагониста дозозависимо: увеличение дозы агониста позволяет преодолеть блокаду, вызванную антагонистом, и получить прежний эффект при условии большей концентрации.

Рис. 4. Образование комплекса лекарство – рецептор приводит к биологической реакции. Величина ответа пропорциональна количеству комплексов лекарство – рецептор. Обычный способ представления взаимосвязи между концентрацией лекарственного средства и биологической реакцией – это кривая «доза (концентрация) – эффект». Пример конкурентного антагонизма. Агонист А вызывает определенный эффект. Если он вводится на фоне антагониста (В), то прежний 100 % эффект достигается в большей концентрации

Неконкурентный антагонизм

При этом виде антагонизма ЛС-антагонист связывается с участком рецептора, отличным от сайта связывания агониста, но изменяет структуру сайта связывания агониста и таким образом снижает сродство агониста. Практически при введении неконкурентного антагониста уменьшается число рецепторов, с которыми может связаться агонист. В результате эффективность агониста снижается, и увеличение концентрации агониста ее уже не восстановит.

Вопрос

Непонятно, куда исчезают рецепторы при неконкурентном антагонизме? Здесь написано, что их становится меньше.

Все рецепторы остаются на месте, но неконкурентный антагонист связывается с рецептором Х, а изменяет сродство рецептора Y к агонисту, который перестает с ним, рецептором Y, связываться. Поэтому даже если увеличить концентрацию агониста, эффект не возрастет, так как связаться с рецептором Y нет возможности.

Рис. 5. Неконкурентный антагонизм. Неконкурентный антагонист связывается с иным рецептором, чем рецептор агониста. При этом уменьшается число рецепторов, с которыми может связаться агонист

Функциональный (физиологический) антагонизм

При этом типе антагонизма две различные молекулы действуют на разные рецепторы и производят физиологически противоположные эффекты.

Согласно современным представлениям, рецептор существует в двух состояниях: Ra (активное) и Ri (неактивное), – которые находятся в равновесии, то есть рецепторы спонтанно (конститутивно) могут изменять свое состояние. В обычных условиях рецепторы предпочитают неактивное состояние Ri, поэтому равновесие без стимуляции сдвинуто в сторону неактивного состояния, и в отсутствие агониста сигнал не генерируется или генерируется очень слабый, т. е. рецептор не проявляет конститутивной активации.

Полный агонист связывается преимущественно с конформацией Ra и сдвигает равновесие в сторону преобладания Ra, что приводит к генерации ответа.

Частичный агонист, кроме сродства с Ra, обладает некоторым (меньшим) сродством с Ri и связывается с обеими формами рецептора, при этом равновесие смещается в сторону Ra, но в меньшей степени, чем в случае с полным агонистом. Очевидно, что ответ на частичный агонист не достигнет максимального значения даже при насыщающих концентрациях (часть рецепторов будет занята, но не активирована), в результате возникает субмаксимальный ответ.

Конкурентный антагонист связывается с Ra и Ri с одинаковым сродством, соответственно, при этом равновесие не нарушается и реакция не генерируется, но антагонист препятствует связыванию агониста Ra с рецептором, т. е. реакция на агонист снижается.

Инверсированный (обратный) агонист имеет высокое сродство с состоянием Ri, он стабилизирует рецептор в неактивной конформации, поэтому он будет уменьшать количество даже спонтанно активируемых рецепторов. Инверсированные агонисты применяют в основном как блокаторы рецепторов.

Рис. 6. А) Полный агонист вызывает зависящий от концентрации ЛС эффект. Увеличение концентрации агониста будет усиливать биологический ответ до тех пор, пока не будут заняты все доступные рецепторы. Б) Частичный агонист, несмотря на взаимодействие со всем пулом рецепторов, не может вызвать ответ, равный действию полного агониста. В) На фоне частичного агониста необходима более высокая концентрация полного агониста для получения максимального ответа. Таким образом, частичный агонист является антагонистом полного агониста

Вопрос

Получается, что частичный агонист при одновременном введении с полным агонистом уменьшает эффект последнего?

Да, это так. Частичный агонист может быть антагонистом полного агониста. Это видно на рис. 6. Наркотические анальгетики (опиоиды) при передозировке вызывают угнетение дыхания, что требует срочного введения антагонистов. До создания полных антагонистов опиоидов при отравлении ими с успехом применяли частичный агонист опиоидных рецепторов налорфин.

Для сравнительной оценки агонистов используют параметры «активность» и «эффективность». Активность – это мера дозы, необходимая для получения ответа. Эффективность – это максимальный ответ, который может вызвать ЛС. Например, ЛС А снижает артериальное давление на 20 мм рт. ст. в дозе 5 мг, а ЛС B снижает артериальное давление на 20 мм рт. ст. в дозе 10 мг. Препараты А и B обладают одинаковой эффективностью, но препарат А активнее.

Доза ЛС, вызывающая 50 % максимального ответа, обозначается как ED50.

Вопрос

Зачем иметь несколько препаратов с разной активностью?

Почему не оставить самый активный?