L’évolution de l’espace et du temps - Henri Poincaré - E-Book

L’évolution de l’espace et du temps E-Book

Henri Poincaré

0,0

Beschreibung

L’univers est l’ensemble de tous les événements : un événement consiste en ceci qu’il se passe ou qu’il existe quelque chose en un certain lieu à un certain instant. Étant donné un système de référence, c’est-à-dire un système d’axes lié à un certain groupe d’observateurs, un événement quelconque est déterminé au point de vue de sa position dans l’espace et dans le temps, par quatre coordonnées rapportées à ce système de référence, trois pour l’espace et une pour le temps.
Étant donnés deux événements rapportés à un certain système de référence, ils différeront en général à la fois dans l’espace et dans le temps, se produiront en des points différents à des instants différents. A un couple d’événements correspondra ainsi une distance dans l’espace (celle des points où les deux événements se passent) et un intervalle dans le temps.
On peut ainsi définir le temps par l’ensemble des événements qui se succèdent en un même point, par exemple dans une même portion de matière liée au système de référence, et définir l’espace par l’ensemble des événements simultanés. Cette définition de l’espace correspond en effet à ceci que la forme d’un corps en mouvement est définie par l’ensemble des positions simultanées des diverses portions de matière qui le composent, de ses divers points matériels, par l’ensemble des événements que constituent les présences simultanées de ces divers points matériels…


À PROPOS DES AUTEURS

Henri Poincaré (1854-1912) fut un mathématicien, physicien et philosophe des sciences français, reconnu pour ses travaux en analyse, topologie et mécanique céleste. Il posa les bases de la théorie des fonctions automorphes et du chaos déterministe. Il contribua à la relativité restreinte avant Einstein et joua un rôle clé dans la physique mathématique. Professeur, académicien et président de plusieurs sociétés scientifiques, il marqua durablement les sciences. Il mourut à Paris en 1912 des suites d’une opération.

Paul Langevin (1872-1946) fut un physicien, philosophe des sciences et homme politique français. Il a marqué la physique par ses travaux sur le magnétisme, le mouvement brownien et l'invention du sonar. Professeur au Collège de France et directeur de l'ESPCI, il introduisit la relativité en France et dirigea les Congrès Solvay. Engagé politiquement, il soutint le mouvement ouvrier et rejoignit le Parti communiste en 1944. Il contribua aussi à la réforme de l’enseignement avec le plan Langevin-Wallon.

Sie lesen das E-Book in den Legimi-Apps auf:

Android
iOS
von Legimi
zertifizierten E-Readern
Kindle™-E-Readern
(für ausgewählte Pakete)

Seitenzahl: 129

Veröffentlichungsjahr: 2025

Das E-Book (TTS) können Sie hören im Abo „Legimi Premium” in Legimi-Apps auf:

Android
iOS
Bewertungen
0,0
0
0
0
0
0
Mehr Informationen
Mehr Informationen
Legimi prüft nicht, ob Rezensionen von Nutzern stammen, die den betreffenden Titel tatsächlich gekauft oder gelesen/gehört haben. Wir entfernen aber gefälschte Rezensionen.



L’évolution de l’espace et du temps

L’évolution de l’espace et du temps

Suivi de

L’espace et ses trois dimensions

L’évolution de l’espace et du temps{1}

L’attention des physiciens s’est trouvée récemment ramenée vers les notions fondamentales de l’espace et du temps que de nouveaux faits expérimentaux les obligent à remanier ; rien ne peut mieux montrer l’origine empirique de ces notions que leur adaptation progressive, non terminée encore, aux données de plus en plus subtiles de l’expérience humaine.

Je voudrais montrer que la forme, insuffisamment analysée d’ordinaire, sous laquelle ces notions se présentaient jusqu’ici, était déterminée, conditionnée, par une synthèse particulière et provisoire du monde, par la théorie mécaniste. Notre espace et notre temps étaient ceux exigés par la mécanique rationnelle.

À la synthèse nouvelle, de plus en plus puissante, que représente la théorie électromagnétique des phénomènes physiques, correspondent un espace et un temps, un temps surtout, autres que ceux de la mécanique, et en faveur desquels nos moyens actuels d’investigation expérimentale viennent de se prononcer. Il est particulièrement remarquable que le perfectionnement croissant de nos méthodes de mesure, dont la précision a pu être poussée pour certaines au-delà du milliardième, nous oblige à continuer encore aujourd’hui l’adaptation aux faits des catégories les plus fondamentales de notre pensée. Il y a là, pour le philosophe, une occasion excellente de pénétrer la nature intime de ces catégories en les trouvant encore en voie d’évolution, en les voyant vivre et se transformer sous ses yeux.

Il n’y a ni espace, ni temps à priori : à chaque moment, à chaque degré de perfectionnement de nos théories du monde physique, correspond une conception de l’espace et du temps. Le mécanisme impliquait la conception ancienne, l’électromagnétisme en exige une nouvelle dont rien ne nous permet de dire qu’elle sera définitive.

Il est d’ailleurs difficile à notre cerveau de s’habituer à ces formes nouvelles de la pensée : la réflexion y est particulièrement délicate et ne pourra être aidée que par la formation d’un langage adéquat.

C’est la tâche à laquelle, pour faciliter l’évolution de l’espèce humaine, philosophes et physiciens doivent aujourd’hui collaborer.

*

Tous les êtres vivants ont une puissance d’expansion intérieure et spontanée d’autant plus grande qu’ils sont mieux adaptés au milieu dans lequel ils ont pris naissance. Quand, par suite de cette expansion, une rencontre a lieu entre individus ou espèces, il peut y avoir adaptation mutuelle, ou, si l’accord est impossible, conflit avec survivance du plus apte qui, en général, s’assimile la substance de l’autre et lui impose une forme nouvelle que la vie semble avoir jugée meilleure.

Il en est de même pour nos théories physiques : certaines sont particulièrement bien constituées, ont brillamment réussi dans l’interprétation, dans le groupement d’une catégorie de fait expérimentaux, matière à laquelle elles imposent une forme ; elles se développent ensuite spontanément suivant cette forme, ce rythme qui leur est propre en prenant pour substance de l’édifice qu’elles construisent les faits déjà connus mais épars, puis ceux qu’elles conduisent à découvrir, et enfin ceux déjà constitués en synthèse sous forme de théories différentes que la nouvelle absorbe après être entrée en conflit avec elles.

De même que le travail de construction des êtres vivants est facilité par les synthèses organiques déjà réalisées dans les autres êtres dont ils s’alimentent, la théorie nouvelle conserve et utilise plus ou moins complètement les groupements de faits déjà constitués par les théories dont elle a triomphé. Nous assistons en ce moment à un conflit de ce genre entre deux conceptions du monde particulièrement importantes et belles : la mécanique rationnelle de Galilée et de Newton d’une part et d’autre part la théorie électromagnétique sous la forme adulte que lui ont donnée Maxwell, Hertz et Lorentz.

La mécanique rationnelle fut créée pour l’interprétation des phénomènes du mouvement visible et elle y réussit de manière admirable. Tout l’effort scientifique du dix-huitième siècle et d’une grande partie du dix-neuvième fut consacré à étendre cette puissance d’explication à l’ensemble des phénomènes physiques en appliquant ces mêmes lois aux mouvements invisibles de particules matérielles ou de fluides variés.

Ainsi se développa la doctrine connue sous le nom de mécanisme, par fusion de la mécanique rationnelle et des hypothèses atomistiques. Le succès fut grand dans certains domaines, dans la théorie cinétique des fluides par exemple, moindre dans d’autres comme ceux de l’élasticité et de l’optique.

Il ne faut pas oublier à ce propos qu’on rendit souvent responsable des insuccès du mécanisme la seule conception atomistique, aujourd’hui cependant définitivement établie sur des faits expérimentaux indiscutables, et dont l’association avec la théorie électromagnétique s’est montrée depuis quinze ans d’une si remarquable fécondité. Ce qui semble en réalité être sujet à caution, c’est l’application aux mouvements invisibles des lois de la mécanique établies d’abord pour les mouvements visibles et qui, même pour ceux-ci, ne représentent plus qu’une première approximation, d’ailleurs excellente.

La théorie des phénomènes électromagnétiques, telle que nous la possédons aujourd’hui, est certainement indépendante des lois prescrites au mouvement de la matière par la mécanique rationnelle, bien que celle-ci semble intervenir dans certaines définitions fondamentales : la meilleure preuve de cette indépendance est fournie par les contradictions qui s’élèvent actuellement entre les deux synthèses.

L’électromagnétisme est aussi remarquablement adapté à son domaine primitif que la mécanique rationnelle a pu l’être au sien ; avec ses notions très spéciales d’un milieu qui transmet les actions de proche en proche, de champs électrique et magnétique caractérisant l’état de ce milieu, avec la forme très particulière des relations qu’il énonce entre les variations simultanées de ces champs dans l’espace et dans le temps, l’électromagnétisme constitue une discipline, un mode de pensée tout-à-fait à part, tout-à-fait distinct de la mécanique, et doué d’une force d’expansion étonnante puisqu’il s’est assimilé sans aucun effort l’immense domaine de Politique et de la chaleur rayonnante devant lequel le mécanisme était resté impuissant, et qu’il y provoque chaque jour des découvertes nouvelles. L’électromagnétisme a conquis la plus grande partie de la physique, envahi la chimie et groupé un nombre immense de faits jusque là sans forme et sans lien.

De nos deux théories adverses, la première possède les titres de noblesse d’un passé déjà ancien, l’autorité d’avoir vu vérifier ses lois par les astres les plus lointains comme par les molécules les plus ténues des gaz; la seconde, plus jeune et plus vivante, s’adapte infiniment mieux à la physique entière et possède une force intérieure de croissance que l’autre semble avoir perdue.

Maxwell avait cru possible de concilier les deux théories et de montrer que les phénomènes électromagnétiques sont susceptibles d’interprétations mécaniques; mais sa démonstration, faite d’ailleurs sur le cas particulier des phénomènes présentés par les courants fermés, prouve seulement que les deux synthèses ont des caractères communs, la propriété commune de laisser stationnaires certaines intégrales, mais elles peuvent rester inconciliables par d’autres caractères.

*

Ces caractères divergents ont été mis récemment en évidence par des faits expérimentaux nouveaux, par le résultat négatif de toutes les expériences, dont certaines d’une extraordinaire délicatesse, qui ont été tentées pour essayer de mettre en évidence le mouvement de translation uniforme d’ensemble d’un système matériel par des expériences intérieures à ce système, pour saisir le mouvement de translation absolu.

On savait déjà, et la Mécanique rationnelle rend parfaitement compte de ce fait, que des expériences de mécanique, sur les mouvements visibles, effectuées à l’intérieur d’un système matériel, ne permettent pas de mettre en évidence un mouvement de translation uniforme d’ensemble du système mais permettent au contraire d’atteindre le mouvement de rotation par le pendule de Foucault ou le gyroscope. Autrement dit, au point de vue mécanique, la translation uniforme d’ensemble n’a pas de sens absolu, la rotation au contraire en a un.

Mais, à l’intérieur d’un système matériel, d’autres expériences peuvent être tentées qui mettent en jeu des phénomènes électromagnétiques ou optiques. La théorie électromagnétique fait intervenir dans ses explications un milieu, l’éther, qui transmet les actions électriques et magnétiques et dans lequel se propagent, avec une vitesse déterminée, les perturbations électromagnétiques, la lumière en particulier.

On pouvait espérer que, si un système matériel se meut d’une translation uniforme par rapport à ce milieu, des expériences électromagnétiques ou optiques intérieures au système puissent permettre de saisir cette translation, de la mettre en évidence.

Comme la Terre, dans son mouvement annuel, possède une vitesse de translation qui varie constamment de quantités allant jusqu’à soixante kilomètres par seconde pour la vitesse relative correspondant à deux positions du globe diamétralement opposées sur l’orbite, on pouvait espérer qu’au moins à certains moments de l’année des observateurs liés à la Terre ainsi que leurs appareils se mouvraient par rapport à l’éther avec une vitesse de cet ordre et pourraient réussir à mettre leur mouvement en évidence.

On pouvait l’espérer, car en combinant les équations fondamentales de l’électromagnétisme, supposées exactes pour des observateurs fixes dans l’éther, avec les notions ordinaires de l’espace et du temps telles que la mécanique rationnelle les exige, on trouvait que ces équations devaient changer de forme pour des observateurs en mouvement dans l’éther, et que les différences, pour des vitesses de l’ordre de celle de la Terre sur son orbite, devaient être visibles dans certaines expériences d’une extraordinaire délicatesse.

Or le résultat s’est trouvé constamment négatif et, indépendamment de toute interprétation, nous pouvons énoncer comme un fait expérimental le contenu du principe suivant, dit de relativité :

Si divers groupes d’observateurs sont en translation uniforme les uns par rapport aux autres (tels des observateurs liés à la Terre pour diverses positions de celle-ci sur son orbite) tous les phénomènes mécaniques et physiques suivront les mêmes lois pour tous ces groupes d’observateurs. Aucun d’eux, par des expériences intérieures au système matériel qui lui est lié, ne pourra mettre en évidence la translation uniforme d’ensemble de ce système.

Au point de vue électromagnétique on peut encore dire que les équations fondamentales, sous leur forme ordinaire, sont vérifiées pour tous ces groupes d’observateurs à la fois, que tout se passe pour chacun d’eux comme s’il était immobile par rapport à l’éther.

*

C’est donc un fait expérimental que les équations entre grandeurs physiques par lesquelles nous traduisons les lois du monde extérieur, doivent se présenter exactement sous la même forme pour divers groupes d’observateurs, pour divers systèmes de référence en translation uniforme les uns par rapport aux autres.

Ceci exige, dans le langage des mathématiques, que ces équations admettent un groupe de transformations correspondant au passage d’un système de référence à un autre en mouvement par rapport à lui. Les équations de la physique doivent se conserver pour toutes les transformations de ce groupe. Dans une telle transformation, quand on passe d’un système de référence à un autre, les mesures des diverses grandeurs, en particulier de celles qui correspondent à l’espace et au temps, sont modifiées d’une manière qui correspond à la structure même de ces notions.

Or les équations de la mécanique rationnelle admettent effectivement un groupe de transformations correspondant au changement du système de référence, et la partie de ce groupe qui concerne les mesures d’espace et de temps est d’accord avec la forme ordinaire de ces notions.

Ce sera le grand mérite de H. A. Lorentz d’avoir montré que les équations fondamentales de l’électromagnétisme admettent aussi un groupe de transformations qui leur permet de reprendre la même forme quand on passe d’un système de référence à un autre : ce groupe diffère profondément du précédent pour ce qui concerne les transformations de l’espace et du temps.

Il faut choisir: si nous voulons conserver une valeur absolue aux équations de la mécanique rationnelle, au mécanisme, ainsi qu’à l’espace et au temps qui leur correspondent, il nous faut considérer comme fausses celles de l’électromagnétisme, renoncer à la synthèse admirable dont j’ai parlé plus haut, revenir en optique par exemple à une théorie de l’émission avec toutes les difficultés qu’elle entraine et qui l’ont fait rejeter voici plus de cinquante ans. Si nous voulons au contraire conserver l’électromagnétisme, il faut adapter notre esprit aux conceptions nouvelles qu’il exige pour l’espace et le temps et envisager la mécanique rationnelle comme n’ayant plus que la valeur d’une première approximation, largement suffisante d’ailleurs lorsqu’il s’agit de mouvements dont la vitesse ne dépasse pas quelques milliers de kilomètres par seconde. L’électromagnétisme, ou des lois de mécanique admettant le même groupe de transformation que lui, permettraient seuls d’aller plus loin et prendraient la place prépondérante que le mécanisme assignait à la mécanique rationnelle.

*

Pour mieux mettre en évidence l’opposition entre les deux synthèses, il est plus simple de fondre, comme l’a proposé Minkowski, les deux notions d’espace et de temps dans la notion plus générale d’univers.

L’univers est l’ensemble de tous les événements : un événement consiste en ceci qu’il se passe ou qu’il existe quelque chose en un certain lieu à un certain instant. Étant donné un système de référence, c’est-à-dire un système d’axes lié à un certain groupe d’observateurs, un événement quelconque est déterminé au point de vue de sa position dans l’espace et dans le temps, par quatre coordonnées rapportées à ce système de référence, trois pour l’espace et une pour le temps.

Étant donnés deux événements rapportés à un certain système de référence, ils différeront en général à la fois dans l’espace et dans le temps, se produiront en des points différents à des instants différents. A un couple d’événements correspondra ainsi une distance dans l’espace (celle des points où les deux événements se passent) et un intervalle dans le temps.

On peut ainsi définir le temps par l’ensemble des événements qui se succèdent en un même point, par exemple dans une même portion de matière liée au système de référence, et définir l’espace par l’ensemble des événements simultanés. Cette définition de l’espace correspond en effet à ceci que la forme d’un corps en mouvement est définie par l’ensemble des positions simultanées des diverses portions de matière qui le composent, de ses divers points matériels, par l’ensemble des événements que constituent les présences simultanées de ces divers points matériels. Si l’on convient avec Minkowski d’appeler ligne d’univers d’une portion de matière qui peut être en mouvement par rapport au système de référence, l’ensemble des événements qui se succèdent dans cette portion de matière, la forme d’un corps à un instant donné est déterminé par l’ensemble des positions simultanées sur leurs lignes d’univers des divers points matériels qui composent ce corps.

La notion de simultanéité d’événements qui se passent en des points différents se présente ainsi comme fondamentale dans la définition même de l’espace lorsqu’il s’agit de corps en mouvement, et c’est le cas général.

Dans la conception ordinaire du temps on attribue à cette simultanéité un sens absolu, on la suppose indépendante du système de référence ; il est nécessaire que nous analysions de plus près le contenu de cette hypothèse généralement tacite.

Pourquoi n’admettons-nous pas d’ordinaire que deux événements, simultanés pour un certain groupe d’observateurs, puissent ne pas l’être pour un autre groupe en mouvement par rapport au premier, ou, ce qui revient au même, pourquoi n’admettons-nous pas qu’un changement du système de référence permette de renverser l’ordre de succession dans le temps de deux événements ?

Cela tient évidemment à ce que nous admettons implicitement que, si deux événements se succèdent dans un certain ordre pour un système donné de référence, celui qui s’est produit le premier a pu intervenir comme cause et modifier les conditions dans lesquelles s’est produit le second, quelle que soit la distance qui les sépare dans l’espace.

Dans ces conditions il est absurde de supposer que pour d’autres observateurs, pour un autre système de référence, le second événement, l’effet, puisse être antérieur à sa cause.

Le caractère absolu admis d’ordinaire pour la notion de simultanéité tient donc à l’hypothèse implicite d’une causalité pouvant se propager avec une vitesse infinie, à l’hypothèse qu’un événement peut intervenir instantanément comme cause à toute distance.