Little Masterpieces of Science: Invention and Discovery - Various - E-Book
SONDERANGEBOT

Little Masterpieces of Science: Invention and Discovery E-Book

Various

0,0
0,49 €
Niedrigster Preis in 30 Tagen: 3,49 €

oder
-100%
Sammeln Sie Punkte in unserem Gutscheinprogramm und kaufen Sie E-Books und Hörbücher mit bis zu 100% Rabatt.
Mehr erfahren.
Beschreibung

"Little Masterpieces of Science: Invention and Discovery" presents a captivating anthology that encapsulates the pivotal moments of human ingenuity through a collection of essays and reflections from various esteemed authors. This compilation is a homage to the remarkable interplay between creativity and scientific inquiry, characterized by a literary style that is both accessible and thought-provoking. Within its pages, readers will encounter illuminating narratives that celebrate groundbreaking inventions and discoveries across disciplines, offering insights into the minds that shaped our modern world. Each piece is meticulously crafted, echoing the intellectual fervor of the late 19th and early 20th centuries'Äîa period marked by rapid scientific advancement and philosophical exploration. The contributors to this anthology hail from diverse backgrounds, representing luminaries in science, philosophy, and literature. Collectively, they reflect the broader cultural zeitgeist of their times and exhibit a shared passion for understanding the mechanisms of innovation. Their own experiences, steeped in the transformative power of science, imbue these essays with a sense of urgency and reverence for the impact of human thought and progress. This collection is a must-read for anyone intrigued by the narratives of invention and discovery that have profoundly shaped society. It not only celebrates the triumphs of the human spirit but also invites readers to ponder the ethical dimensions of innovation. In engaging with this anthology, one revisits the thrilling journey of science as a distinctly human endeavor, making it a valuable addition to both personal and academic libraries.

Das E-Book können Sie in Legimi-Apps oder einer beliebigen App lesen, die das folgende Format unterstützen:

EPUB

Veröffentlichungsjahr: 2019

Bewertungen
0,0
0
0
0
0
0
Mehr Informationen
Mehr Informationen
Legimi prüft nicht, ob Rezensionen von Nutzern stammen, die den betreffenden Titel tatsächlich gekauft oder gelesen/gehört haben. Wir entfernen aber gefälschte Rezensionen.



Various

Little Masterpieces of Science: Invention and Discovery

Published by Good Press, 2022
EAN 4057664565952

Table of Contents

PREFACE
INVENTION AND DISCOVERY
FRANKLIN IDENTIFIES LIGHTNING WITH ELECTRICITY
FARADAY'S DISCOVERIES LEADING UP TO THE ELECTRIC DYNAMO AND MOTOR
PROFESSOR JOSEPH HENRY'S INVENTION OF THE ELECTRIC TELEGRAPH
THE FIRST ATLANTIC CABLES
George Iles
BELL'S TELEPHONIC RESEARCHES
PHOTOGRAPHING THE UNSEEN: THE ROENTGEN RAY
H. J. W. Dam
THE WIRELESS TELEGRAPH
George Iles
ELECTRICITY, WHAT ITS MASTERY MEANS: WITH A REVIEW AND A PROSPECT
George Iles
COUNT RUMFORD IDENTIFIES HEAT WITH MOTION.
VICTORY OF THE “ROCKET” LOCOMOTIVE.

DOUBLEDAY, PAGE & COMPANY

1902

Copyright, 1902, by Doubleday, Page & Co. Copyright, 1877, by George B. Prescott Copyright, 1896, by S. S. McClure Co. Copyright, 1900, by Doubleday, McClure & Co.

PREFACE

Table of Contents

To a good many of us the inventor is the true hero for he multiplies the working value of life. He performs an old task with new economy, as when he devises a mowing-machine to oust the scythe; or he creates a service wholly new, as when he bids a landscape depict itself on a photographic plate. He, and his twin brother, the discoverer, have eyes to read a lesson that Nature has held for ages under the undiscerning gaze of other men. Where an ordinary observer sees, or thinks he sees, diversity, a Franklin detects identity, as in the famous experiment here recounted which proves lightning to be one and the same with a charge of the Leyden jar. Of a later day than Franklin, advantaged therefor by new knowledge and better opportunities for experiment, stood Faraday, the founder of modern electric art. His work gave the world the dynamo and motor, the transmission of giant powers, almost without toll, for two hundred miles at a bound. It is, however, in the carriage of but trifling quantities of motion, just enough for signals, that electricity thus far has done its most telling work. Among the men who have created the electric telegraph Joseph Henry has a commanding place. A short account of what he did, told in his own words, is here presented. Then follows a narrative of the difficult task of laying the first Atlantic cables, a task long scouted as impossible: it is a story which proves how much science may be indebted to unfaltering courage, to faith in ultimate triumph.

To give speech the wings of electricity, to enable friends in Denver and New York to converse with one another, is a marvel which only familiarity places beyond the pale of miracle. Shortly after he perfected the telephone Professor Bell described the steps which led to its construction. That recital is here reprinted.

A recent wonder of electric art is its penetration by a photographic ray of substances until now called opaque. Professor Röntgen's account of how he wrought this feat forms one of the most stirring chapters in the history of science. Next follows an account of the telegraph as it dispenses with metallic conductors altogether, and trusts itself to that weightless ether which brings to the eye the luminous wave. To this succeeds a chapter which considers what electricity stands for as one of the supreme resources of human wit, a resource transcending even flame itself, bringing articulate speech and writing to new planes of facility and usefulness. It is shown that the rapidity with which during a single century electricity has been subdued for human service, illustrates that progress has leaps as well as deliberate steps, so that at last a gulf, all but infinite, divides man from his next of kin.

At this point we pause to recall our debt to the physical philosophy which underlies the calculations of the modern engineer. In such an experiment as that of Count Rumford we observe how the corner-stone was laid of the knowledge that heat is motion, and that motion under whatever guise, as light, electricity, or what not, is equally beyond creation or annihilation, however elusively it may glide from phase to phase and vanish from view. In the mastery of Flame for the superseding of muscle, of breeze and waterfall, the chief credit rests with James Watt, the inventor of the steam engine. Beside him stands George Stephenson, who devised the locomotive which by abridging space has lengthened life and added to its highest pleasures. Our volume closes by narrating the competition which decided that Stephenson's “Rocket” was much superior to its rivals, and thus opened a new chapter in the history of mankind.

George Iles.

INVENTION AND DISCOVERY

Table of Contents

Top

FRANKLIN IDENTIFIES LIGHTNING WITH ELECTRICITY

Table of Contents

Dr. Stuber, the author of the first continuation of Franklin's life, gives this account of the electrical experiments of Franklin:—

“His observations he communicated, in a series of letters, to his friend Collinson, the first of which is dated March 28, 1747. In these he shows the power of points in drawing and throwing off the electrical matter, which had hitherto escaped the notice of electricians. He also made the grand discovery of a plus and minus, or of a positive and negative state of electricity. We give him the honour of this without hesitation; although the English have claimed it for their countryman, Dr. Watson. Watson's paper is dated January 21, 1748; Franklin's July 11, 1747, several months prior. Shortly after Franklin, from his principles of the plus and minus state, explained in a satisfactory manner the phenomena of the Leyden phial, first observed by Mr. Cuneus, or by Professor Muschenbroeck, of Leyden, which had much perplexed philosophers. He showed clearly that when charged the bottle contained no more electricity than before, but that as much was taken from one side as thrown on the other; and that to discharge it nothing was necessary but to produce a communication between the two sides by which the equilibrium might be restored, and that then no signs of electricity would remain. He afterwards demonstrated by experiments that the electricity did not reside in the coating as had been supposed, but in the pores of the glass itself. After the phial was charged he removed the coating, and found that upon applying a new coating the shock might still be received. In the year 1749, he first suggested his idea of explaining the phenomena of thunder gusts and of aurora borealis upon electric principles. He points out many particulars in which lightning and electricity agree; and he adduces many facts, and reasonings from facts, in support of his positions.

“In the same year he conceived the astonishingly bold and grand idea of ascertaining the truth of his doctrine by actually drawing down the lightning, by means of sharp pointed iron rods raised into the regions of the clouds. Even in this uncertain state his passion to be useful to mankind displayed itself in a powerful manner. Admitting the identity of electricity and lightning, and knowing the power of points in repelling bodies charged with electricity, and in conducting fires silently and imperceptibly, he suggested the idea of securing houses, ships and the like from being damaged by lightning, by erecting pointed rods that should rise some feet above the most elevated part, and descend some feet into the ground or water. The effect of these he concluded would be either to prevent a stroke by repelling the cloud beyond the striking distance or by drawing off the electrical fire which it contained; or, if they could not effect this they would at least conduct the electrical matter to the earth without any injury to the building.

“It was not until the summer of 1752 that he was enabled to complete his grand and unparalleled discovery by experiment. The plan which he had originally proposed was, to erect, on some high tower or elevated place, a sentry-box from which should rise a pointed iron rod, insulated by being fixed in a cake of resin. Electrified clouds passing over this would, he conceived, impart to it a portion of their electricity which would be rendered evident to the senses by sparks being emitted when a key, the knuckle, or other conductor, was presented to it. Philadelphia at this time afforded no opportunity of trying an experiment of this kind. While Franklin was waiting for the erection of a spire, it occurred to him that he might have more ready access to the region of clouds by means of a common kite. He prepared one by fastening two cross sticks to a silk handkerchief, which would not suffer so much from the rain as paper. To the upright stick was affixed an iron point. The string was, as usual, of hemp, except the lower end, which was silk. Where the hempen string terminated, a key was fastened. With this apparatus, on the appearance of a thundergust approaching, he went out into the commons, accompanied by his son, to whom alone he communicated his intentions, well knowing the ridicule which, too generally for the interest of science, awaits unsuccessful experiments in philosophy. He placed himself under a shed, to avoid the rain; his kite was raised, a thunder-cloud passed over it, no sign of electricity appeared. He almost despaired of success, when suddenly he observed the loose fibres of his string to move towards an erect position. He now presented his knuckle to the key and received a strong spark. How exquisite must his sensations have been at this moment! On his experiment depended the fate of his theory. If he succeeded, his name would rank high among those who had improved science; if he failed, he must inevitably be subjected to the derision of mankind, or, what is worse, their pity, as a well-meaning man, but a weak, silly projector. The anxiety with which he looked for the result of his experiment may easily be conceived. Doubts and despair had begun to prevail, when the fact was ascertained, in so clear a manner, that even the most incredulous could no longer withhold their assent. Repeated sparks were drawn from the key, a phial was charged, a shock given, and all the experiments made which are usually performed with electricity.”

FARADAY'S DISCOVERIES LEADING UP TO THE ELECTRIC DYNAMO AND MOTOR

Table of Contents

Top

[Michael Faraday was for many years Professor of Natural Philosophy at the Royal Institution, London, where his researches did more to subdue electricity to the service of man than those of any other physicist who ever lived. “Faraday as a Discoverer,” by Professor John Tyndall (his successor) depicts a mind of the rarest ability and a character of the utmost charm. This biography is published by D. Appleton & Co., New York: the extracts which follow are from the third chapter.]

In 1831 we have Faraday at the climax of his intellectual strength, forty years of age, stored with knowledge and full of original power. Through reading, lecturing, and experimenting, he had become thoroughly familiar with electrical science: he saw where light was needed and expansion possible. The phenomena of ordinary electric induction belonged, as it were, to the alphabet of his knowledge: he knew that under ordinary circumstances the presence of an electrified body was sufficient to excite, by induction, an unelectrified body. He knew that the wire which carried an electric current was an electrified body, and still that all attempts had failed to make it excite in other wires a state similar to its own.

What was the reason of this failure? Faraday never could work from the experiments of others, however clearly described. He knew well that from every experiment issues a kind of radiation, luminous, in different degrees to different minds, and he hardly trusted himself to reason upon an experiment that he had not seen. In the autumn of 1831 he began to repeat the experiments with electric currents, which, up to that time, had produced no positive result. And here, for the sake of younger inquirers, if not for the sake of us all, it is worth while to dwell for a moment on a power which Faraday possessed in an extraordinary degree. He united vast strength with perfect flexibility. His momentum was that of a river, which combines weight and directness with the ability to yield to the flexures of its bed. The intentness of his vision in any direction did not apparently diminish his power of perception in other directions; and when he attacked a subject, expecting results, he had the faculty of keeping his mind alert, so that results different from those which he expected should not escape him through pre-occupation.

He began his experiments “on the induction of electric currents” by composing a helix of two insulated wires, which were wound side by side round the same wooden cylinder. One of these wires he connected with a voltaic battery of ten cells, and the other with a sensitive galvanometer. When connection with the battery was made, and while the current flowed, no effect whatever was observed at the galvanometer. But he never accepted an experimental result, until he had applied to it the utmost power at his command. He raised his battery from ten cells to one hundred and twenty cells, but without avail. The current flowed calmly through the battery wire without producing, during its flow, any sensible result upon the galvanometer.

“During its flow,” and this was the time when an effect was expected—but here Faraday's power of lateral vision, separating, as it were from the line of expectation, came into play—he noticed that a feeble movement of the needle always occurred at the moment when he made contact with the battery; that the needle would afterwards return to its former position and remain quietly there unaffected by the flowing current. At the moment, however, when the circuit was interrupted the needle again moved, and in a direction opposed to that observed on the completion of the circuit.

This result, and others of a similar kind, led him to the conclusion “that the battery current through the one wire did in reality induce a similar current through the other; but that it continued for an instant only, and partook more of the nature of the electric wave from a common Leyden jar than of the current from a voltaic battery.” The momentary currents thus generated were called induced currents, while the current which generated them was called the inducing current. It was immediately proved that the current generated at making the circuit was always opposed in direction to its generator, while that developed on the rupture of the circuit coincided in direction with the inducing current. It appeared as if the current on its first rush through the primary wire sought a purchase in the secondary one, and, by a kind of kick, impelled backward through the latter an electric wave, which subsided as soon as the primary current was fully established.

Faraday, for a time, believed that the secondary wire, though quiescent when the primary current had been once established, was not in its natural condition, its return to that condition being declared by the current observed at breaking the circuit. He called this hypothetical state of the wire the electro-tonic state: he afterwards abandoned this hypothesis, but seemed to return to it in after life. The term electro-tonic is also preserved by Professor Du Bois Reymond to express a certain electric condition of the nerves, and Professor Clerk Maxwell has ably defined and illustrated the hypothesis in the Tenth Volume of the “Transactions of the Cambridge Philosophical Society.”

The mere approach of a wire forming a closed curve to a second wire through which a voltaic current flowed was then shown by Faraday to be sufficient to arouse in the neutral wire an induced current, opposed in direction to the inducing current; the withdrawal of the wire also generated a current having the same direction as the inducing current; those currents existed only during the time of approach or withdrawal, and when neither the primary nor the secondary wire was in motion, no matter how close their proximity might be, no induced current was generated.

Faraday has been called a purely inductive philosopher. A great deal of nonsense is, I fear, uttered in this land of England about induction and deduction. Some profess to befriend the one, some the other, while the real vocation of an investigator, like Faraday, consists in the incessant marriage of both. He was at this time full of the theory of Ampère, and it cannot be doubted that numbers of his experiments were executed merely to test his deductions from that theory. Starting from the discovery of Oersted, the celebrated French philosopher had shown that all the phenomena of magnetism then known might be reduced to the mutual attractions and repulsions of electric currents. Magnetism had been produced from electricity, and Faraday, who all his life long entertained a strong belief in such reciprocal actions, now attempted to effect the evolution of electricity from magnetism. Round a welded iron ring he placed two distinct coils of covered wire, causing the coils to occupy opposite halves of the ring. Connecting the ends of one of the coils with a galvanometer, he found that the moment the ring was magnetized, by sending a current through the other coil, the galvanometer needle whirled round four or five times in succession. The action, as before, was that of a pulse, which vanished immediately. On interrupting the current, a whirl of the needle in the opposite direction occurred. It was only during the time of magnetization or demagnetization that these effects were produced. The induced currents declared a change of condition only, and they vanished the moment the act of magnetization or demagnetization was complete.

The effects obtained with the welded ring were also obtained with straight bars of iron. Whether the bars were magnetized by the electric current, or were excited by the contact of permanent steel magnets, induced currents were always generated during the rise, and during the subsidence of the magnetism. The use of iron was then abandoned, and the same effects were obtained by merely thrusting a permanent steel magnet into a coil of wire. A rush of electricity through the coil accompanied the insertion of the magnet; an equal rush in the opposite direction accompanied its withdrawal. The precision with which Faraday describes these results, and the completeness with which he defined the boundaries of his facts, are wonderful. The magnet, for example, must not be passed quite through the coil, but only half through, for if passed wholly through, the needle is stopped as by a blow, and then he shows how this blow results from a reversal of the electric wave in the helix. He next operated with the powerful permanent magnet of the Royal Society, and obtained with it, in an exalted degree, all the foregoing phenomena.

And now he turned the light of these discoveries upon the darkest physical phenomenon of that day. Arago had discovered in 1824, that a disk of non-magnetic metal had the power of bringing a vibrating magnetic needle suspended over it rapidly to rest; and that on causing the disk to rotate the magnetic needle rotated along with it. When both were quiescent, there was not the slightest measurable attraction or repulsion exerted between the needle and the disk; still when in motion the disk was competent to drag after it, not only a light needle, but a heavy magnet. The question had been probed and investigated with admirable skill by both Arago and Ampère, and Poisson had published a theoretic memoir on the subject; but no cause could be assigned for so extraordinary an action. It had also been examined in this country by two celebrated men, Mr. Babbage and Sir John Herschel; but it still remained a mystery. Faraday always recommended the suspension of judgment in cases of doubt. “I have always admired,” he says, “the prudence and philosophical reserve shown by M. Arago in resisting the temptations to give a theory of the effect he had discovered, so long as he could not devise one which was perfect in its application, and in refusing to assent to the imperfect theories of others.” Now, however, the time for theory had come. Faraday saw mentally the rotating disk, under the operation of the magnet, flooded with his induced currents, and from the known laws of interaction between currents and magnets he hoped to deduce the motion observed by Arago. That hope he realized, showing by actual experiment that when his disk rotated currents passed through it, their position and direction being such as must, in accordance with the established laws of electro-magnetic action, produce the observed rotation.